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0 MATH CAMP: Probability and Inference

0.1 Probability basics

Probability is a mathematical tool we use to discuss known uncertainty. For example, in Fall
2020 we wanted to be able to talk intelligently about the probability that say in Joe Biden
wins the presidential election: is it likely, unlikely, how likely? Before an event is observed,
probability of any given outcome can be either known or unknown, but after an event is
observed it becomes a known event (e.g., Biden won the 2020 election, there is no uncertainty
over the outcome at this point).

We talk about probability when a yet unobserved event has a random component or chance
element. We call a situation where we known all the possible outcomes of a situation (but
not which one will occur) a random process. Let S be the set of all possible outcomes from a
particular random process. We call this particular set the sample space as it contains all the
outcomes. Each event A ⊂ S is one or more particular outcomes.

That’s all well and good but what is probability? What does it mean for an event to have
probability 1/3? For the most part, it’s easiest to think about probability in terms of long-run
frequency. This can be a little bit tricky as often times we want to know the probability of an
event that doesn’t repeat (2020 election, weather for tomorrow, etc). However, think about
flipping a fair coin, if you do it a bunch of times, the proportion of heads will be about 50%
(we’ll return to this later when we move into the law of large numbers). But let’s give it a try:

set.seed(1)
x <- sample(0:1, 100, replace=TRUE)
table(x)

## x
## 0 1
## 49 51

y <- cumsum(x)/(1:100)
plot(y=y, x=1:100, main='Average proportion of heads by tosses',

xlab='Number of tosses', ylab='Prop. heads', ylim=c(0,1))
abline(h=.5)

# Let's repeat the process a few more times
x2 <- sample(0:1, 100, replace=TRUE)
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y2 <- cumsum(x2)/(1:100)
points(y=y2, x=1:100, main='Average proportion of heads by tosses',

xlab='Number of tosses', ylab='Prop. heads', pch=2)
x3 <- sample(0:1, 100, replace=TRUE)
y3 <- cumsum(x3)/(1:100)
points(y=y3, x=1:100, main='Average proportion of heads by tosses',

xlab='Number of tosses', ylab='Prop. heads', pch=4)
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The
point here is that any particular event or series of events is different, but in the long run the
observed average equals the probability of a head.

So let’s back up to the sample space S. For a single coin toss S = {H,T}. For two tosses it
becomes S = {HH,HT, TH, TT}. What about a more complicated example: The lifetime
of a GMC bus engine in days? Now the sample space takes on all the positive integers
S = N∪ 0 = {0, 1, 2, 3, ...}. Finally, these can be increasingly complicated as in the income of
10 randomly selected individuals S = R10

+ (ten dimensions of positive real numbers). Unlike
single tosses of a fair coin, the events within these sample spaces are not all equally likely.

As mentioned before, an event is a particular subset from the sample space. For example

1. If S is all possible rolls of a pair of dice, one event might be rolling a 10 or higher. Let
A denote that event, in which case we have A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}.

2. The event that our GMC bus engine lives less than 1000 days is A = [0, 1000).
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Let’s introduce some additional set notation as we think about an example. Suppose we toss
a fair coin 3 times and record all three tosses. The sample space then becomes

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

or {H,T}3. R has a function called expand.grid that’s helpful for these types of expansions:

S <- expand.grid(c("H", "T"), c("H","T"), c("H","T"))
print(S)

## Var1 Var2 Var3
## 1 H H H
## 2 T H H
## 3 H T H
## 4 T T H
## 5 H H T
## 6 T H T
## 7 H T T
## 8 T T T

Let A be the event that the third toss is a head, this is defined as

A = {HHH,HTH, THH, TTH}.

Let B be the event that the second toss is a head then we have

B = {HHH,HHT, THH, THT}.

We can now consider some set operations

1. The union of A and B is denoted A ∪B and is the event that A or B (or both) occurs
2. The intersection of A and B is denoted A ∩ B and is the event that both A and B

occur
3. The complement of A is denoted A′ or Ac or ¬A and is the event that A does not occur

Additionally, if A is a subset of B then knowing A has occurred implies that B has occurred.
Let’s go back to the coins.

1. What is the union of A and B? The event that either the second or third toss is heads:

A ∪B = {HHH,HHT,HTH, THH, THT, TTH}
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2. What is the intersection of A and B? The event that both the second or third toss is
heads:

A ∩B = {HHH,THH}

3. What is the complement of A? The event that the third toss is not heads (is tails)

A′ = {HHT,HTT, THT, TTT}.

4. Is A a subset of B? Is B a subset of A? No. {HTH} ∈ A, /∈ B and {HHT} /∈ A,∈ B
5. Is A ∩B a subset of A or B? Yes, both.
6. Is A ∪B a subset of A or B? No, but A and B are both subsets of A ∪B.

Additionally, we can consider two more results that follow from De Morgan: LetA1, A2, . . . , AN

be a collection of sets then

1.
(⋃N

i=1Ai
)′

= ⋂N
i=1A

′
i

2.
(⋂N

i=1Ai
)′

= ⋃N
i=1A

′
i

So far so good, we have events that make up a sample space. But we need a little more
structure to be able to talk meaningfully about probability as a description of uncertainty.
There are some rules to how probability can be used to describe the likelihood or probability
of observing an event E. These rules are called the axioms of probability. Let’s define
probability as a function Pr that satisfies the following

1. 0 ≤ Pr(E) ≤ 1 (all probabilities are bounded between 0 and 1; sets the scale of
probability)

2. Pr(S) = 1 Something possible happens
3. For mutually exclusive (disjoint) events Pr

(⋃N
i=1Ei

)
= ∑N

i=1 Pr(Ei)

Note that mutually exclusive means that if Ei occurs than Ej cannot also occur for i 6= j.
Think of axiom 3 like you would a measure of area in geometry. You can break up a triangle
or square into disjoint pieces and sum up the individual areas to get the total. Same in
probability (but disjoint is the important aspect).

These axioms do a little work for us. Specifically they tell us some interesting properties of
probability
Theorem 1 Let A and B be events. Then,

1. Pr(∅) = 0

2. If A ⊂ B, then Pr(A) ≤ Pr(B)
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3. Pr(A) ≤ 1

4. Pr(A′) = 1− Pr(A)

5. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

We’ll prove these in turn

Proof. 1. By Axiom 2 we know that Pr(S) = 1. We also know that any union with the
empty set returns the original set as in S = S ∪ ∅ ∪ ∅ ∪ . . . ∪ ∅. We also know that the
sample space and the empty set are disjoint. By Axiom 3 it follows that

Pr(S) = Pr(S) + Pr(∅) + Pr(∅) + . . .+ Pr(∅)

1 = 1 + Pr(∅) + Pr(∅) + . . .+ Pr(∅)

Which is only true if Pr(∅) = 0.

2. If A ⊂ B then we can define B = A ∪ (B ∩ A′) (i.e., B is the combination of A with
everything in B but not in A). Note that these events are disjoint. As such by Axiom
3 we have

Pr(B) = Pr(A) + Pr(B ∩ A′).

By Axiom 1 we know that Pr(B ∩ A′) ≥ 0 and so Pr(B) ≥ Pr(A).

3. A is a subset of S. By Property 2 Pr(A) ≤ Pr(S) = 1

4. S = A ∪ A′, which are disjoint by definition. By Axiom 3

Pr(S) = Pr(A) + Pr(A′)

1 = Pr(A) + Pr(A′)

Pr(A) = 1− Pr(A′)

5. Once again we rewrite A ∪B as A ∪ (B ∩A′), which is the union of disjoint events. As
such we can write Pr(A∪B) = Pr(A) + Pr(B ∩A′). Note that B = (A∩B)∪ (A′ ∩B)
(also disjoint). As such by Axiom 3 we get

Pr(B) = Pr(A ∩B) + Pr(A′ ∩B)

Pr(A′ ∩B) = Pr(B)− Pr(A ∩B).
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Substitution then gives us

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

This gives us some interesting and important first steps into probability. Let’s try a few
example problems:

Consider a standard deck of 52 cards and answer the following:

1. What’s the probability drawing a black king? (2/52 = 0.04)

2. What’s the probability of drawing either a black card or a king? (26/52+4/52−2/52 =
28/52 ≈ 0.54)

Now consider a survey of the American public. Let’s say that 52% identify as Democrats.
What’s the probability that a randomly selected respondent is a Republican?

You thought it was 0.48, didn’t you? Are the events exclusive? yes. Are they exhaustive? no.
This means that we don’t actually have enough information to answer the question. I pulled
a trick on you. Let’s try one more for you:

0.1.1 Conditional probability

Another bit of definition fun for you is the idea of (in)dependence. Two events are indepen-
dent if knowing the outcome of one does not change the probability of observing the other.
In these cases (and only in these cases) we have

Pr(A ∩B) = Pr(A) Pr(B).

When events are not independent we say they’re dependent, but how much does the probability
of A change if we know B? This is a question is one of conditional probability.

In this situation we know that B has occurred so we can restrict our sample space from S to
B and we now that A is not relevant event but A ∩B is. So we construct the probability of
A given B as:

Pr(A|B) = Pr(A ∩B)
Pr(B) .
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For example, suppose we toss a pair of six-sided dice and someone tells you the total was a
ten. What is the probability that exactly one of the dice is a six? Here, B is the event of
rolling a ten, how many ways are there to do that?

B = {(4, 6), (5, 5), (6, 4)}.

And A is the even that one six is rolled, how many ways are there to do that?

{(1, 6), (2, 6), (3, 6), . . . , (6, 1), (6, 2), . . . (6, 5)}.

So the intersection is A ∩B = {(4, 6), (6, 4)} and for accounting S is 36 equally likely events
so we have

Pr(A|B) = Pr(A ∩B)
Pr(B) = 2/36

3/26 = 2
3 .

We can simulate it for our own gratification:

set.seed(1)
rolls <- replicate(5000, sample(1:6,size=2, replace=TRUE))
dim(rolls) #columns are rolls; rows are dice

## [1] 2 5000

tens <- colSums(rolls) ==10 #Identify rolls that summed to 10
one6 <- colSums(rolls==6)==1
AcapB <- rolls[,tens&one6]
B <- rolls[,tens]
c(ncol(AcapB)/5000, 2/36)

## [1] 0.05620000 0.05555556

c(ncol(B)/5000, 3/36)

## [1] 0.08620000 0.08333333

ncol(AcapB)/ncol(B)

## [1] 0.6519722

Let’s try another famous one: The Monte Hall problem. Once upon a time, there was a game
show where the contestant had to pick from one of three doors. Behind one of the doors is a
good prize, while behind the other two is nothing. The sequence of events is

11



1. The contestant picks a door A, B, or C
2. Monte Hall (the host) opens a different door that always reveals nothing (i.e., if the

contestant chooses poorly Monte Hall always opens the other bad door, while if the
contestant chooses correctly, then Monte Hall chooses to reveal from the two bad door
with equal probability).

3. The contestant now has to choose between sticking with their original pick or switching
to the other unopened door, what should they do?

Without loss of generality we can assume that the contestant picks A first. This allows us to
put some easy notation on the problem. Starting from the contestant choosing A there are
four possible outcomes:

1. AB: the prize is behind A and Monte opens B (1/6)
2. AC : the prize is behind A and Monte opens C (1/6)
3. BC : the prize is behind B and Monte opens C (1/3)
4. CB: the prize is behind C and Monte opens B (1/3)

Again without loss of generality, suppose that Monte opens B . Once Monte opens B, we
can now condition on the subscript B. events 1 and 4 are now given (2 and 3 if you want
to do C instead).. So the relevant probabilities are sticking with A Pr(AB|AB ∪ CB) versus
1 − Pr(AB|AB ∪ CB). So let’s start with this: What is the unconditional probability of
Pr(AB)? Well there’s 1/3 change of any given door having the prize at the start and then
Monte independently chooses between B and C so it becomes 1/3× 1/2 = 1/6. The same
logic applies to AC . For BC we have a 1/3 chance that B is correct and Monte has to open
C with certainty so Pr(BC) = 1/3 (same for CB). Now we can do some substitution

Pr(AB|AB ∪ CB) = Pr(AB ∩ (AB ∪ CB))
Pr(AB ∪ CB)

= Pr(AB)
Pr(AB) + Pr(CB)

= 1/6
1/6 + 1/3 = 1

3 .

Staying put wins 1 in 3 times. So switching wins 2 in 3 times: always switch. The intuition
behind this problem is that Monte reveals some information because he has to open a bogus
door. If you stand pat your chance stays 1/3 (the a priori chance of getting it right), but
now there’s only two options. We can simulate if you don’t believe
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monte.hall <- function(switch=TRUE){
true.door <- sample(1:3, size=1)
pick <- sample(1:3, size=1)
reveal <- ifelse(pick==true.door,

sample((1:3)[-true.door], size=1),
(1:3)[-c(true.door,pick)])

if(switch){
pick <- (1:3)[-c(pick, reveal)]

}
win <- (true.door==pick)
return(win)

}

with.switch <- replicate(10000, monte.hall())
without.switch <- replicate(10000, monte.hall(switch=FALSE))
c(mean(with.switch), mean(without.switch))

## [1] 0.6733 0.3387

Pretty cool, right?

The next thing you should know about is the product rule of probability. Specifically, we
can rearrange the conditional formula such that

Pr(A ∩B) = Pr(A) Pr(B|A).

Note that under independence Pr(B|A) = Pr(B) so this is generalizes our independence
product rule from above. We can actually generalized this further to get
Theorem 2 (Product rule) Let A1, A2, . . . AN be a sequence of events with Pr(A1∩, . . . ,∩AN−1) >
0. Then

Pr(A1∩, . . . ,∩AN) = Pr(A1) Pr(A2|A1) Pr(A3|A1, A2) . . .Pr(AN |A1, A2, . . . , AN−1).

A sketch of this proof for N = 3 works as follows. We start by applying the conditional
probability formula to both Pr(A2|A1) and Pr(A3|A1 ∩ A2) and rearranging some terms to
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get two equations

Pr(A2 ∩ A1) = Pr(A1) Pr(A2|A1)

Pr(A2 ∩ A1) = Pr(A3 ∩ A1 ∩ A2)/Pr(A3|A1 ∩ A2)

Combining them using like terms gives us

Pr(A3 ∩ A1 ∩ A2)/Pr(A3|A1 ∩ A2) = Pr(A1) Pr(A2|A1)

Pr(A3 ∩ A1 ∩ A2) = Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩ A2).

Repeating this process for larger N will show the result.

Let’s try another problem. Suppose we draw three balls from a bowl with 5 white and 5
black balls without replacement. What is the probability of drawing three black balls? There
are three events to consider here, let Bi be the event that the ith draw is black for i = 1, 2, 3.
We are interested in Pr(B1 ∩B2 ∩B3). Applying the product rule we see that

Pr(B1 ∩B2 ∩B3) = Pr(B1) Pr(B2|B1) Pr(B3|B1 ∩B2)

= 1
2 ×

4
9 ×

3
8 ≈ 0.0833

Conditional probabilities are hella cool, but often times we want to able to transition from
Pr(A|B) to Pr(B|A). Note that these are generally not a complement as the conditioning
outcome changes (and as such the how denominator). So how do we move from one to the
other? We will start by writing both of these out and looking for common terms:

Pr(A ∩B) = Pr(A|B) Pr(B)

Pr(A ∩B) = Pr(B|A) Pr(A).

You might see where this is going, but let’s finish it up:

Pr(B|A) Pr(A) = Pr(A|B) Pr(B)

Pr(B|A) = Pr(A|B) Pr(B)
Pr(A) .

This little switch-a-roo is called “Bayes’ Rule.” It will come up a lot in your graduate training.

We can explore this a little further, by noting that many times we may not directly know
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unconditional probability of A in these situations. So s continue our exploration of dependent
events by considering a sequence of events B1, . . . , BN that partition the sample space as
shown:

S

A

B1 B2 B3 B4 B5

A partition is a set of disjoint events whose union is S. Note that we can find the total
probability of A by taking the sum of

Pr(A) =
N∑
i=1

Pr(A ∩Bi)

or by applying conditional probability to the above to get

Pr(A) =
N∑
i=1

Pr(A|Bi) Pr(Bi).

This sum is known as the law of total probability. We can use this result then to rewrite
an expanded version of Bayes’ rule

Pr(Bj|A) = Pr(A|Bj) Pr(Bj)∑N
i=1 Pr(A|Bi) Pr(Bi)

.

For example, consider the following Cancer statistics:

1. A random woman in her 40s has about a 1.5% chance of having breast cancer
2. Mammograms will correctly identify cancer in about 87% of women who have cancer
3. Mammograms will produce a false positive about 10% of the time for this age group

What is the probability that a women in her 40s who tested positive on a mammogram
actually has breast cancer?

Let A be the event that the woman has cancer and B be the event that she tested positive.
What do we want to know? Pr(A|B). What are we need?

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B)
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1. Pr(A) = 0.015
2. Pr(B|A) = 0.87
3. Pr(B|A′) = 0.10
4. Pr(A′) = 0.985

Notice that Pr(B) is not in the given information, what do we do? Apply the law of total
probability

Pr(B) = Pr(B|A) Pr(A) + Pr(B|A′) Pr(A′)

= 0.87(0.015) + 0.10(0.985)

≈ 0.112.

Now we can roll

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B|A) Pr(A) + Pr(B|A′) Pr(A′)

= 0.87(0.015)
0.112

= 0.013
0.112

≈ 0.12

So the risk of that this woman has cancer has risen 8-fold but the balance of probability is
still against cancer. How many tests positive tests in a row do we need before we’re confident?
Reapply Bayes rule, but what’s the new baseline risk? 0.12 Let Ai be the number of positive
tests in a row we can now rewrite

Pr(Ai|B) = Pr(B|Ai) Pr(Ai)
Pr(B|Ai) Pr(Ai) + Pr(B|A′i) Pr(A′i)

Where Pr(Ai) increases every time we get a new positive. Let’s program this

base <- 0.015
true.pos <- 0.87
false.pos <- 0.10
bayes <- function(base, true.pos, false.pos){

new.prob <- (true.pos * base)/
(true.pos*base + false.pos*(1-base))

return(new.prob)
}

16



update <- rep(0,5)
for(i in 1:5){

base <- bayes(base, true.pos, false.pos)
update[i] <- base

}
information <- update/c(0.015, update[1:4])
par(mfrow=c(1,2))
plot(y=update,x=1:5, xlab="Number of positive tests", ylab="Updated cancer risk")
plot(y=information,x=1:5, xlab="Number of positive tests",

ylab="Relative increase in cancer risk")
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Figure 1: Bayesian updating

After 2 tests the balance of evidence favors cancer, but it’s pretty even (54-46). By 3 positives,
we’re pretty confident (91%). This would obviously get more complicated if we considered a
sequence of positive and negative results, but let’s not worry about that right now.
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0.1.2 Independent events

We’ll pause our discussion of dependent events for a moment to return to independent events.
Obviously, independence makes things easier as

Pr(A ∩B) = Pr(A) Pr(B|A) = Pr(A) Pr(B).

This product rule for independence holds for any number of independent events and is both
a necessary and sufficient condition for independence.
Often times we will assert independence and then have to justify it (with varying degrees of
success). A lot of applied data analysis is either justifying independence or figuring out to
include dependencies (and frequently both at the same time).

Let’s consider a specific example here. Consider an experiment where we toss a coin N times.
The sample space S becomes all possible ways that sequence of N tosses can go:

S = {(0, 0, . . . , 0), . . . , (1, 1, . . . , 1)},

where 0 denotes Tails and 1 denotes Heads. Let Ai be the event that the ith toss is a heads.
The tosses are now independent and identically distributed (i.i.d.). In this specific case
Pr(Ai) = p for all i. We can say a little more about the probability function that defines this
experiment. Let’s start by saying we want to know what’s the probability of have k heads
and the N − k tails? By independence that becomes

Pr(1, 1, . . . , 1, 0, 0, . . . , 0) = pk(1− p)N−k

Let Bk be the event that there are a total of k heads in the N tosses. This becomes a union
of exclusive events, right? To see this consider three tosses and think about if k = 2, every
row with two heads is exclusive from the others.

expand.grid(1:0, 1:0, 1:0)

## Var1 Var2 Var3
## 1 1 1 1
## 2 0 1 1
## 3 1 0 1
## 4 0 0 1
## 5 1 1 0
## 6 0 1 0
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## 7 1 0 0
## 8 0 0 0

So the probability of {1, 1, 0} is p2(1− p), but there are three ways to get two heads so for
this particular case we have

Pr(B2) = 3× p2(1− p)1.

Or more generally

Pr(Bk) =
(
N

k

)
pk(1− p)N−k.

Where the
(
N
k

)
operator asks how many ways where there to get k success in N trials? this

is called the binomial or the choose function:(
N

k

)
= N !

(N − k)!k!

The probability we derived

Pr(Bk) =
(
N

k

)
pk(1− p)N−k, k = 0, 1, 2, . . . , N

is called binomial distribution: our first named distribution

0.2 Random variables and distributions

0.2.1 Random variables basics

We turn our attention to random variables, which are a major building block of everything else
we do hereon. A random variable is a function f : S → R. Intuitively it maps from outcomes
in the sample space into numerical outcomes. For example, imagine that we once again toss
a pair of dice and record the sum. The sample space remains the 36 paired outcomes denoted
(with a slight abuse of notation)

S = {(i, j)}6
i,j=1

while the random variable X that denotes the sum. Here X is a function i + j that maps
from S into the integers from 2 to 12. As you know there will be several different ways to get
most outcomes. For instances there are 5 different ways to get an 8 and so Pr(X = 8) = 5

36 .
You can verify for yourself that there is an easy way to write out the distribution of X such
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that
Pr(X = x) = 6− |7− x|

36 , x = 2, 3, . . . , 12

While random variables are, and always will be, functions, it is often useful to think about
them in terms of outcomes of an observed experiment. The intuition here is that we have an
experiment in mind and the random variable will record the outcome when we run in the
future. In the present we are simply thinking about all the things that might happen when
we run the experiment and how likely those different outcomes are. We tend to use a capital
letter to denote a random variable X, Y, Z and lower case letters for specific outcomes x, y, z.

Recall from the above that we had an experiment where we flipped a coin N times and
recorded the number of heads. This is an example of a random variable. Let X be the total
number of heads from N flips. Then we know from what we did last time that

Pr(X = x) =
(
N

k

)
px(1− p)N−x, x = 0, 1, . . . , N.

As mentioned before this is the binomial distribution. Which is to say that X is a binomial
random variable. The binomial is the first of several probability distributions we will
encounter. To satisfy yourself that X is a function note that it takes the sample space (raw
coin tosses) and sums up the number of heads. Almost anything you want to study that is of
interest can be thought of as a random variable (even when the sample space is perhaps too
large to produce).

1. The amount of spending on a campaign
2. Whether of not there is a civil war in a given country-year
3. The percentage of the Black vote will a candidate receive

So long as there is uncertainty over what the outcome will be before observation you can
imagine it as a random variable. There are two main kinds of random variables:

1. Discrete random variables take on a set of specific, countable values (i.e., integers,
categories, years)

2. Continuous random variables are measured in intervals (i.e., inches, years, dollars) There
can be ambiguity here in cases where its unclear if something discrete is better/easier
thought of continuously.
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0.2.2 Distributions

There are several ways to think about probability distributions for a random variable X.
Specifically we can think about specific outcomes Pr(X = x) or intervals Pr(a ≤ X ≤ b).
One common way to proceed is in terms of the cumulative distribution function (CDF)
defined as a function F : R→ [0, 1] such that F (X) = Pr(X ≤ x). A few interesting facts
about F that follow from the axioms of probability are

1. F is weakly increasing F (x) ≤ F (x′) for all x ≤ x′.
2. F does not have to be continuous, but it will be right-hand continuous limh→0+ F (x+
h) = F (x)

3. limx→∞ F (X) = 1 and
4. limx→−∞ F (X) = 0
5. 0 ≤ F (x) ≤ (1)

We will not prove these for time, but you can look them up if you’re interested.

The CDF allows us to quantify the probability of observing any interval result. Specifically,

Pr(a < X ≤ b) = F (b)− F (a).

To see this note the following

Pr(X ≤ b) = Pr(X ≤ a ∪ (a < X ≤ b))

= F (a) + Pr(a < X ≤ b)

Pr(a < X ≤ b) = F (b)− F (a)

The events on the right-hand side of the first line are disjoint which allows us to use the sum
rule. After that we just rearrange terms. How we include Pr(X = a) will depend on whether
the random variable is continuous or discrete.

0.2.3 Discrete distributions

A random variable X has a discrete distribution if X is a discrete random variable. In other
words, if there is a countable set of outcomes (finite or not) that X can take on then X

is discrete and follows a discrete distribution. The probability mass function (PMF) f
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describes the probability of each event such that

f(x) = Pr(X = x)

F (X) = Pr(X ≤ x)

Pr(X = A) =
∑
i:xi∈A

f(xi)

1 =
∑
i

f(xi),∀xi ∈ supp(X).

Where supp(X) is the support of X (all values that X can take on with positive probability).

Suppose you roll two dice and let X be the maximum of the two rolls. What’s the distribution
of X?

library(xtable)
rolls <- expand.grid(1:6, 1:6)
xout <- rep(0,6)
for(i in 1:6){

xout[i] <- nrow(rolls[rolls[,1]==i & rolls[,2]<=i |
rolls[,2]==i & rolls[,1]<=i,])/nrow(rolls)

}
xout <- matrix(xout, nrow=1)
colnames(xout) <- 1:6
rownames(xout) <- c("$f(x)$")
print(xtable(xout, caption="PMF of maximum roll"),

sanitize.text.function = function(x){x}, comment = FALSE)

1 2 3 4 5 6
f(x) 0.03 0.08 0.14 0.19 0.25 0.31

Table 1: PMF of maximum roll

sum(xout)

[1] 1

So the probability that the maximum is 3 or less? ∑3
x=1 f(x) = 0.25.
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0.2.4 Continuous distributions

A random variable X has a continuous distribution if X is a continuous random variable
such that there is a positive function f such that for all a and b

Pr(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f(u)du

and ∫ ∞
−∞

f(u)du = 1.

Now f is called a probability density function (pdf), and the cdf F (x) = Pr(X ≤ x) =∫ x
−∞ f(u)du. Working that in reverse we can also note that f(x) = DxF (x).

The caveat of interest here is that f is not a probability it is a probability density. For a
continuous variable X, Pr(X = x) = 0 for all x. You’ll never draw/observe any exact number
from a continuous distribution.

Suppose that X represents a randomly drawn number from the interval [0, 2] where every
number is equally possible. What is the pdf and cdf of X?

If every value is “equally possible” then the pdf will be a constant so we need to know what
constant c satisfies

1 =
∫ 2

0
cdu

= cu|20
= 2c− 0

c = 1/2

Which means that the pdf is

f(x) =

1/2 0 ≤ x ≤ 2

0 otherwise.

Applying the integral from 0 to x gives us the CDF

F (x) =
∫ x

0
1/2du

= u/2|x0
= x/2
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or more precisely

F (x) =


0 x < 0

x/2 0 ≤ x ≤ 2

1 x > 2

This particular distribution is called a uniform distribution. Generally it is defined by
parameters a and b such that

f(x) =

1/(b− a) a ≤ x ≤ b

0 otherwise.

and

F (x) =


0 x < a

x−a
b−a a ≤ x ≤ b

1 x > b

0.2.5 Expected value

The functions F and f contain all the information housed within a random variable. However,
we are often interested in particular descriptions of random variable. Most commonly we
want to know the expected value and variance. We will consider these in turn.

The expected value or expectation or a random variable is a weighted average of all the values
that X can take, specifically we say that for a discrete X

E[X] =
∑

x∈supp(X)
xPr(X = x)

Note that the expected value does not have to be in the support of X. Consider rolling a fair
die once. Each roll is equally likely and we get ∑6

x=1
x
6 .

sum(1:6/6)

## [1] 3.5

Which is outside the support of X.

One easy way to think about expected values is in terms of expected payoff. Suppose we play
a game of dice where I pay you X dollars per round where X is the sum of two randomly
tossed dice. What entry fee y would make this game even on average?
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Here we need to set

d = E[X]

= 2 Pr(X = 2) + 3 Pr(X = 3) + . . .+ 12 Pr(X = 12)

rolls <- expand.grid(1:6, 1:6)
pr <- table(rowSums(rolls))/36 #calculate the probabilities
Ex <- sum(2:12*pr)
print(Ex)

## [1] 7

For a $7 entry fee the game is “fair.” What does this mean? Remember this is about long-run
thinking. If we play this game an infinite number of times the payoff will be 0 for a seven
dollar fee.

set.seed(1)
X <- replicate(1000,sum(sample(1:6, size=2, replace=TRUE)))
y <- X - 7
par(mfrow=c(1,2))
plot(y=y, x=1:1000, xlab="Number of plays", ylab="Profit")
hist(y, xlab="Payout", freq=FALSE, main="")
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Figure 2: Distribution of outcomes from the game

As you can see, at any given moment you may be up or down, but the payoff is centered
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around that expected value and X is centered around it’s expected value. “Centered” however
is a slight misnomer here, as an expected value is really about the “center of mass” of the
random variable. Suppose we redid the above but I paid out the maximum rather than the
sum. Redefine X to be the maximum and now we have to balance

d = E[X]

= 1 Pr(X = 1) + 2 Pr(X = 2) + . . .+ 6 Pr(X = 6)

Ex <- sum(xout*1:6) #xout was defined above for maximum
print(Ex)

## [1] 4.472222

set.seed(1)
X <- replicate(1000,max(sample(1:6, size=2, replace=TRUE)))
y <- X - Ex
par(mfrow=c(1,2))
plot(y=y, x=1:1000, xlab="Number of plays", ylab="Profit")
hist(y, xlab="Payout", freq=FALSE, main="")
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Figure 3: Distribution of outcomes from the new game

Note here that the expected value of y is 0 (more on this in a second), but it’s not peaked or
centered there. This is because the distribution of the maximum is skewed, not symmetric.
When a distribution is symmetric its expected value will be close to the middle (if it exists).
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Otherwise, it’ll be “pulled” towards longer tail (“left-skewed” here) and lower than the peak
value.

For continuous random variables the expectation is similarly defined. Such that for continuous
X we have

E[X] =
∫
x
xf(x)dx.

One theorem we’ll use a lot is the following
Theorem 3 (The Law of the Unconscious Statistician) Let X with pmf/pdf f be a
random variable whose expected value exists. For any real valued function g

E[g(X)] =
∑
x

g(x)f(x)

for discrete X and
E[g(X)] =

∫
x
g(x)f(x)dx

for continuous X.

Proof. We will prove the discrete case and leave the continuous case on my assertion. Let
Y = g(X) with pmf fY . What do we know about fY ?

fY (y) = Pr(Y = y)

= Pr(g(X) = y)

=
∑

x:g(x)=y
Pr(X = x)

=
∑

x:g(x)=y
f(x).

Now we can look at the expected value of Y

E[Y ] =
∑
y

yfY (y)

=
∑
y

y
∑

x:g(x)=y
f(x).

=
∑
y

∑
x:g(x)=y

yf(x).

=
∑
x

g(x)f(x).
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Let’s give it a try: Let X be the outcome of a rolling a single die. What is the expectation of
X2?

E[X2] =
6∑

x=1
x2f(x) = 1

6

6∑
x=1

x2

sum((1:6)^2 * (1/6))

## [1] 15.16667

Two highly relevant facts fall out of this theorem are that expectations are linear:

1. E[aX + b] = aE[X] + b

2. E[g(X) + h(X)] = E[g(X)] + E[h(X)]

These both follow directly from the fact that sums and integrals can be split along summation
signs.

One other thing to note is the median of a random variable is the value m such that
Pr(X ≤ m) = Pr(X ≥ m) = 0.5 The value of m may be either a single value or a pair that
co-define the median (median of a single die roll: {3, 4}; median of the sum of two dice {7}).
Sometimes people average a pair median together; let the circumstances dictate for you.

0.2.6 Variance

Another interesting descriptor of a random variable is the variance, which measures the
spread of a random variable around its expected value. Specifically,

Var(X) = E[X2]− E[X]2 = E[(x− E[X])2]

The main properties/restatements we’ll consider right now is that

Var(c) = 0

Var(aX + b) = a2 Var(X)

Var(g(X)) = E[(g(x)− E[g(X)])2]

= E[g(X)2]− E[g(X)]2]

where c, a, and b are constants.

The variance reports the squared distance that each outcome is from the expected value.
Squared distance is nice because the direction of the distance doesn’t matter, but squared
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units can be difficult to understand/interpret/use. We frequently look at the standard
deviation instead which is defined as

sd(X) =
√

Var(X).

Standard deviations are nice because they are on the same units as X.

0.2.7 Moments

Expected value and variance are examples of moments. A moment is a descriptive aspect of
a random variance and can be used to fully describe a distribution. Specifically the moment
generating function of a random variable X is defined as

M(s) = E[esX ],

where e = 2.718 . . . is a mathematical constant with the following properties:

ex = exp(x) just another to write it

e0 = 1

e1 = e

e−x = 1/ex

exp(x)y = exy

ex+y = exey

ex−y = ex/ey

exp(x) > 0, ∀x ∈ R

Dxe
x = ex > 0 Strictly increasing

D2
xe
x = ex > 0 Convex function

lim
N→∞

(
1 + x

N

)N
= ex

curve(exp(x), from=-4, to=4)

Back to the main event: Moment generating functions have a uniqueness property, wherein
we can say that X and Y have identical moment generating functions if and only if they
follow the same distribution.

Individual moments come from evaluating derivatives of the moment generating functions
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(mgfs) at 0 (if these derivatives exist). Specifically the rth (raw) moment is defined as,

E[Xr] = Dr
sM(0).

Such that the expected value and variance are given by

E[X] = DsM(0)

Var(X) = D2
sM(0)− (DsM(0))2

One useful result we can cover is the following
Theorem 4 Let X be a random variable with mgf MX(s), and let Y = aX + b where a and
b are constant. Then the mgf of Y is given by

MY (s) = ebsMX(as).

Proof. By definition

MY (s) = E[esY ] = E[es(aX+b)] = E[esaXeSb] = esb E[esaX ] = esbMX(as),

which is what we had to show.
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This result allows us to talk about central moments. The central moments are defined by
first centering the distribution. The kth central moment of X is defined as

E[(X − µ)k] = Dk
se
−µkM(0).

Note that the first central moment will always be 0 (E[X]−µ), but the second central moment
will be the variance.

Two additional qualities of distributions include the skewness

Skew = E[(X − µ)3]
σ3

and kurtosis
Kurtosis = E[(X − µ)4]

σ4 .

The former defines how asymmetric the distribution is with 0 being symmetric, positive
values being right skewed (long right tail), and negative values being left skewed (long left
tailed). The latter defines how fat the tails are, or how weird outliers are. When tails are fat
outliers are less unusual (leptokurtic; kurtosis > 3; e.g., t). When tails are thin outliers
are very unusual (platykurtic; kurtosis < 3; e.g., Uniform). A distribution is mesokurtic
(normal level of outliers) when kurtosis about 3 (e.g., Normal).

Another result that will be helpful to us later is the following
Theorem 5 Let X1, . . . , XN be a sequence of independent random variable with mgf Mi(s),
and let Y = ∑N

i=1Xi. Then the mgf of Y is given by

MY (s) =
N∏
i=1

Mi(s).

Proof. By definition

MY (s) = E[esY ] = E[es
∑N

i=1 Xi ] = E[es(X1+X2+...+XN )] = E
[
N∏
i=1

esXi
]
.

Since we specified that Xi are independent for i 6= j, then

E
[
N∏
i=1

esXi
]

=
N∏
i=1

E
[
esXi

]
=

N∏
i=1

Mi(s),

which is what we had to show.
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0.2.8 Normal distribution

We’ve introduced two important distributions so far: binomial and uniform. There are many,
many more to consider, but we’ll focus on one that’s extra important to us going forward:
the Normal distribution (sometimes called the Gaussian). A random variable X is normally
distributed with expected value µ and variance σ2 if it has a pdf

f(X;σ2, µ) = 1
σ
√

2π
e−

1
2(x−µσ )2

,, x ∈ R

We write this as X ∼ N(µ, σ2). If µ = 0 and σ2 = 1 we have what’s called the “standard
normal” or

φ(X) = 1√
2π
e−

x2
2 ,, x ∈ R

which is so cool that it gets to be φ instead of f .

You’ve seen normal distributions all over the place, they’re the most famous “bell curves”

curve(dnorm(x, mean=0, sd=0.5), from=-5,to=6, ylab=expression(f(x)))
curve(dnorm(x, mean=0, sd=1), from=-5,to=6, add = TRUE, col="blue")
curve(dnorm(x, mean=2, sd=2), from=-5,to=6, add = TRUE, col="red")
legend(x="topright",

legend =c("N(0, 0.25)", "N(0,1)", "N(2,4)"),
col = c("black", "blue", "red"), lty=1)
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0
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2
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x

f(x
)

N(0, 0.25)
N(0,1)
N(2,4)

Figure 5: Different normals
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As you can see, the expected value parameter µ centers the distribution and σ2 (the variance)
changes the spread. However, they’re all bell and all symmetric.

Fun facts about the normal distribution:

1. If X ∼ N(µ, σ2), then Z = X−µ
σ
∼ N(0, 1). This is called a Z transformation. To see

this consider

Pr(Z ≤ z) = Pr
(
X − µ
σ

≤ z
)

= Pr (X ≤ zσ + µ)

=
∫ zσ+µ

−∞

1
σ
√

2π
e−

1
2(x−µσ )2

dx

=
∫ z

−∞

1√
2π
e−z

2/2dz

= Φ(z)

Where the transition from line 3-4 follows from integration by substitution where the
substitution function is g(x) = x−µ

σ
.

2. Immediately following from the above is the identity that if X ∼ N(µ, σ2) then X can
be written as X = µ + σZ, where Z ∼ N(0, 1). Any normal random variable is an
affine transformation of a standard normal random variable (constant plus weighted
random variable).

3. The expected value, median, and mode of X is µ

4. The moment generating function of a normal random variables is

MX(s) = esµ+s2σ2/2

5. For large N and mid-ranged p the binomial distribution is approximately normal with
mean Np and variance Np(1− p)

set.seed(1)
B <- rbinom(1000, size=100, prob=.7)
hist(B, freq=FALSE)
curve(dnorm(x, mean=100*.7, sd=sqrt(100*.7*.3)), col="red", add=T)

a. In general the sum of N iid random variables will be normally distributed for large
N (more on this Thursday)
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Figure 6: Normal approximation to the binomial

We can consider some useful functions for the normal

pnorm(0) #CDF of the standard normal

## [1] 0.5

pnorm(1.96, lower.tail=FALSE) # 1- CDF

## [1] 0.0249979

qnorm(0.025) #inverse CDF

## [1] -1.959964

dnorm(0) #pdf

## [1] 0.3989423

rnorm(4) #generate random normals

## [1] 0.3146242 0.8015725 0.4860589 1.7255611
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#see help files for more

0.2.9 Functions of random variables

Let X1, . . . , XN be the outcomes of an experiment. We typically don’t want to present or
explain every individual data point, instead we are interested in using functions of the random
variables to build an argument. Quantities like the average, minimum, maximum, variance,
etc. As functions of random variables these quantities are themselves a random variable.

The general approach to describing the distribution of a random variable Y = g(X) is to
rewrite the CDF of Y in terms of the CDF of X. For example let Y = a+ bX where b 6= 0.
To find the distribution of Y we first want to rewrite FY (y) in terms of X and then rearrange
(assume b > 0 for now)

FY (y) = Pr(Y ≤ y) = Pr(a+ bX ≤ y) = Pr(X ≤ (y − a)/b) = FX((y − a)/b).

To find the PDF
DyFX((y − a)/b) = 1

b
fX((y − a)/b).

Note that when b < 0, FY (y) = 1 − FX((y − a)/b) with pdf fY (y) = −1
b
fX((y − a)/b).

Combining these we get
fy(y) = 1

|b|
fX((y − a)/b).

Despite being a very specific example, the above actually leads us into a more general formula
for transformations of random variables. Specifically, let Y = g(X) where g is invertable and
differentiable and the PDF of Y is given by

fY (y) =
∑

x:g(x)=y
fX(g−1(y))/|Dxg(x)|.
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Let’s try it out with (1) from above, where X ∼ N(0, 1) and we want to find Y = X2.

g(x) = x2

Dxg(x) = 2x

g−1(y) = ±√y

fY (y) = φ(−√y)/|2x|+ φ(√y)/|2x|

=
(

1√
2π
e−(−√y)2/2 + 1√

2π
e−(√y)2/2

)
/(2√y)

=
(

2√
2π
e−y/2

)
/ (2√y)

=
(

1√
2yπe

−y/2
)

=
(
y−1/2e−y/2

21/2Γ(1/2)

)
,

which is the χ2
1 pdf (fun fact Γ(1/2) =

√
π). The Γ function is one of those weird math things

that occasionally pops up. Don’t lose sleep over it.

We can use the same technology to find all sorts of relationships between distributions. If we
had more time and a lot of patience we could show

1. If Xi ∼ N(µi, σ2
i ) for i = 1, . . . , N , then Y = ∑N

i=1Xi ∼ N
(∑N

i=1 µi,
∑N
i=1 σ

2
i

)
(if Xi

and Xj are independent for all i 6= j; if dependent, then apply the variance of a sum
formula from above).

2. If Xi ∼ N(0, 1) for i = 1, . . . , N , then Y = ∑N
i=1 X

2
i ∼ χ2

N (if Xi and Xj are independent
for all i 6= j)

3. If X ∼ N(0, 1) and Y ∼ χ2
k, then t = X/

√
Y/k ∼ tk (helpful, but damn messy and

beyond our scope) (if X and Y are independent)
4. If X ∼ tk, then Y = X2 ∼ F (1, k)
5. If X ∼ χ2

k and Y ∼ χ2
j , then F = X/k

Y/j
∼ F (k, j) (if X and Y are independent)

These are helpful relationships we should remember. Set the t stuff aside for now, we’ll get
to that later in math camp, and we’ll return to the F in 602. For the χ2

k let’s consider a few
simulations

X <- rnorm(1000)
Xsq <- X^2
par(mfrow=c(2,2))
hist(X, main="", xlab=expression(X%~%N(0,1)), freq=FALSE, breaks="Scott")
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curve(dnorm(x), add=T, col="red")
hist(X^2, main="", xlab=expression(X^2%~%{chi^2}[1]), freq=FALSE, breaks="Scott")
curve(dchisq(x,df=1), add=T, col="red")

# More
Xn <- replicate(10, rnorm(1000))
Xn2 <- rowSums(Xn^2)
hist(Xn2, main="",freq=FALSE, breaks="Scott",

xlab=expression(sum({X[i]}^2, i==1, 10)%~%{chi^2}[10]))
curve(dchisq(x,df=10), add=T, col="red")

Xn <- replicate(25, rnorm(1000))
Xn2 <- rowSums(Xn^2)
hist(Xn2, main="", freq=FALSE, breaks="Scott",

xlab=expression(sum({X[i]}^2, i==1, 25)%~%{chi^2}[25]))
curve(dchisq(x,df=25), add=T, col="red")
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Figure 7: Relationship between the standard Normal and χ2 distribution

Let’s try a couple practice problems: 1. Suppose we have independent random variables
X ∼ N(0, 1) and Y ∼ N(1, 2), find the distributions of X + Y and X − Y . Based on result
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(1) above we know that X + Y ∼ N(1, 3) and X − Y ∼ N(−1, 3) 2. Suppose that X and Y
(above) are dependent with Cov(X, Y ) = −1/4, Find the distributions of X + Y and X − Y .
Based on result (1) and above we know that X + Y ∼ N(1, 3 + 2(−1/4)) = N(1, 2.5) and
X − Y ∼ N(−1, 3− 2(−1/4)) = N(1, 3.5)

0.2.10 Approximations

One final note before we move on. There will be times in your life where you will be interested
in finding E[g(X)] and Var(g(X)), but direct calculation (as in the above) will be impractical.
Let µ = E[X], and we can use a Taylor series approximation to approximate g(X).

A full Taylor series can approximate a function g(x) that has k derivatives around a given
point a as:

g(x) = g(a) +Dxg(a)(x− a) + (x− a)2

2! D2
xg(a) + ...+ (x− a)k

k! Dk
xg(a) + o(|x− a|k).

Here o is “little o” notation and refers to a function o that converges to 0 as x goes to a (you
may never see that again, it’s just a remainder term). This approximation gets better for
values of x that are close to a. For our purposes we will often do an expansion around the
expected value E[X] = µ and really we usually only need k = 1 or 2 most of the time. The
expected value makes for a good choice of a because it’s the point that minimizes the average
distance from X to a over all x ∈ supp(X).

Here’s what we want to do with this:

g(X) = g(µ) +DXg(µ)(X − µ) + Remainder

≈ g(µ) +DXg(µ)(X − µ)

E[g(X)] ≈ g(µ) +DXg(µ) E[X − µ]

≈ g(µ)

≈ g(E[X])

This is an approximation and it can be more or less wrong. If we know something about the
shape of the function we can say a little about how wrong it is using Jensen’s inequality.
Jensen tells us

1. If g is convex (D2
xg(a) > 0) then E[g(X)] ≤ g(E[X]). Some convex functions include

exp and x2
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2. If g is concave (D2
xg(a) < 0) then E[g(X)] ≥ g(E[X]). Some concave functions include

log and
√
x

Say g(x) = ex, then the first-order approximation will be? (Ans: weakly larger than the
truth). If this bothers us, we can extend this into a second order expansion to get a better
approximation and mitigates the Jensen problem:

E[g(X)] ≈ g(µ) +DXg(µ) E[X − µ] + 1
2D

2
Xg(µ) E[(X − µ)2]

≈ g(µ) + 1
2D

2
Xg(µ) Var(X).

Applying just the first-order expansion with the variance we get

Var(g(X)) ≈ DXg(µ)2 Var(X),

which is the basis of the Delta Method (we’ll see this again again and state it formally
tomorrow).

Practice: let X be a normal random variable with mean 1 and variance 1, find the first and
second order approximation to E[exp(X)].

The first order is pretty straightforward: E[g(X)] ≈ g(E[X]) or E[exp(X)] = exp(E[X]) =
e1 = e. The second order is a little more involved

E[g(X)] ≈ g(E[X]) + 1
2D

2
xg(E[X]) Var(X)

= e+ 1
2 exp(E[X]) Var(X)

= e+ 1
2e

= 3e
2

0.3 Joint and conditional distributions

Up until now we’ve only considered random variables as solo acts. However, it would be a
very boring world if everything was independent of everything else. This will lead us into the
idea of distributions that describe two or more random variables.

Let X1, X2, . . . , XN be random variables that describe some experiment. When we had a
single X we were interested in the CDF that represented Pr(X ≤ x), now however we are
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interested in a joint CDF that we define as

F (x1, x2, . . . , xN) = Pr(X1 ≤ x1 ∩X2 ≤ x2 ∩ . . . ∩XN ≤ xN).

We’re going to (mostly) focus on just situations of two random variables, but everything
carries up.

0.3.1 Discrete joint distributions

Let X1 and X2 be discrete random variables. The function f is a joint pmf of X1, X2 if

f(x1, x2) = Pr(X1 = x1, X2 = x2).

Note that for a well specified f we can find all possible probabilities for combinations of
X1, X2. Specifically, we can also find the pmf of any just X1 by summing over all values of X2

f(x1) = Pr(X1 = x1) =
∑

x∈supp(X2)
Pr(X1 = x1, X2 = x)

The intuition can be seen in a two by two table. Imagine drawing a card from an ordinary
deck and we care if its an odd, even, or face card and whether it’s black or red.

X/Y Black Red total
Face 6/52 6/52 12/52
Odd 10/52 10/52 20/52
Even 10/52 10/52 20/52
total 1/2 1/2 1

The individual cells of the table show the joint probabilities of these events. For example,
Pr(X = Face, Y = Red) = 6/52 (Jack, Queen, King of Hearts/Diamonds). The distribution
of just X (the marginal) is the final column, while the marginal of Y is the final row. Note,
that this generally isn’t reversible, we can’t get from the marginal to the joint.

The one cases where we can move from joints and marginals without trouble is when the
random variables are independent. Random variables X1, X2 are independent only if

Pr(X1 = x1, X2 = x2) = Pr(X1 = x1) Pr(X2 = x2)

for all possible x1, x2.

Is the card example above independent? Yes, notice that each joint can be written as the
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product of the marginals. We could make it not independent by, say, remove all of the red
face cards then

X/Y Black Red total
Face 6/46 0 6/46
Not face 20/46 20/46 40/46
total 26/46 20/46 1

Now we can see that joints are no longer equal to the product of the marginals, which implies
that events are not independent. A simple extension of the above result tells us that a
sequence X1, . . . , XN is independent if and only if

f(x1, . . . , xn) =
N∏
i=1

fi(xi)

0.3.2 Continuous joint distributions

As before the results for continuous distributions will look similar to discrete ones. Now we
are interested in the joint pdf of continuous random variables X1, . . . , XN

Pr(a1 ≤ X1 ≤ b1, . . . , aN ≤ XN ≤ bN) =
∫ b1

a1
. . .
∫ bN

aN
f(x1, . . . , xn)dx1 . . . dxN .

That. . . looks like a nightmare, but don’t worry it looks a lot worse than it’ll ever be in
practice. A two dimensional case might be easier

Pr(a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2) =
∫ b1

a1

∫ b2

a2
f(x1, x2)dx1dx2.

As before we can back out the marginal by integrating over all values of one variable such
that

f(x1) =
∫ ∞
−∞

f(x1, x2)dx2.

Also like before we have an independence result where X1, . . . , XN are independent continuous
random variables if and only if

f(x1, . . . , xN) =
N∏
i=1

fi(xi)

for all {x1, . . . , xN} ∈ RN .
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0.3.3 Expectations and variance

The means, variances, and higher moments of any specific variable in a joint distribution are
defined with respect to their marginal distribution as in:

E[X1] =
∫ ∞
−∞

x1f(x1)dx1

=
∫ ∞
−∞

x1

∫ ∞
−∞

f(x1, x2)dx2dx1

=
∫ ∞
−∞

∫ ∞
−∞

x1f(x1, x2)dx2dx1

Var(X1) =
∫ ∞
−∞

(x1 − E[X1])2f(x1)dx1

=
∫ ∞
−∞

(x1 − E[X1])2
∫ ∞
−∞

f(x1, x2)dx2dx1

=
∫ ∞
−∞

∫ ∞
−∞

(x1 − E[X1])2f(x1, x2)dx2dx1

Some properties that will be useful. As we saw before the expectation of a sum of random
variables will be the sum of the expectations. Specifically let Y = a+b1X1+b2X2+. . .+bNXN ,
and a, b1, . . . , bN are constants. Then

E[Y ] = a+ b1 E[X1] + . . .+ bN E[XN ].

This follows because constants can move out of sums/integrals and sums/integrals can be
split along addition/subtraction.

For example suppose that X1, . . . , XN are identically distributed Bernoulli with parameter p.
The Bernoulli distribution describes a random variable that only takes on values 1 or 0 with
probability p and 1− p, respectively. It is a special case of the binomial distribution where
N = 1. The expected value of a Bernoulli is

E[Xi] = 1p+ 0(1− p) = p

and so the expected value of B = ∑N
i=1 Xi is

E[B] = E
[
N∑
i=1

Xi

]
=

N∑
i=1

E [Xi] =
N∑
i=1

p = Np.
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Another useful property: Suppose that X1, . . . , XN are independent, then

E[X1X2 . . . XN ] = E[X1] E[X2] . . .E[XN ].

We will consider a two dimensional proof: let f(x1, x2) be the joint pdf of X1, X2 with
marginals f(x1) and f(x2), then

E[X1X2] =
∫ ∫

x1x2f(x1, x2)dx1dx2

=
∫ ∫

x1x2f(x1)f(x2)dx1dx2 by independence

=
∫
x1f(x1)dx1

∫
x2f(x2)dx2

= E[X1] E[X2].

Generalizing this to discrete or to more than two variables is straightforward.

0.3.4 Covariance

Something we haven’t seen yet is the idea of covariance. Covariance describes how linearly
dependent two variables are on each other. The covariance of random variable X1 and X2 is
given by

Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])].

Notice that if X1 = X2 this simplifies in the variance. Covariance is interpretable at the sign
level. Positive covariance means that large (small) values of X1 are associated with large
(small) values of X2. Negative covariance means that small (large) values of X1 are associated
with large (small) values of X2.

Some important things to remember about variances and covariances for random variables
X, Y, Z,W and constants a, b, c, d:

1. Var(X) = E[X2]− E[X]2

2. Var(aX + b) = a2 Var(X)
3. Cov(X, Y ) = E[XY ]− E[X] E[Y ]
4. Cov(X, Y ) = Cov(Y,X)
5. Cov(X, a) = 0
6. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)
7. Cov(aX+ bY, cW +dZ) = acCov(X,W ) +adCov(X,Z) + bcCov(Y,W ) + bdCov(Y, Z)
8. Cov(X,X) = Var(X)
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9. Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y )
10. Var(X − Y ) = Var(X) + Var(Y )− 2 Cov(X, Y )
11. Var

(∑N
i=1 biXi

)
= b2

i

∑N
i=1Xi, for independent Xi’s

These are straight forward to prove to yourself using the definitions of covariance and
independence.

Covariance is cool, but we can often get a little more information from the correlation of
X1, X2:

ρ(X1, X2) = Cov(X1, X2)
sd(X1)sd(X2) .

The correlation will always be in the interval -1 to 1. Values closer to ±1 describe a more
linear relationship.

0.3.5 Conditional distributions

Suppose that X and Y are random variables with pmf/pdf f(x, y) where the marginal
f(x) > 0. Then the conditional pdf/pmf of Y given that X = x is given as the conditional
pmf/pdf

f(y|X = x) = f(x, y)
f(x) .

This function tell us that the pdf/pmf for a fixed value of X. There’s a Bayes’ rule for
conditional distributions too,

f(y|X = x) = f(x|Y = y)f(y)
f(x) .

This extension allows us to define things like the conditional expectation of Y given that
we’ve observed X = x:

E[Y |X = x] =
∫
yf(y|X = x)dy.

Or the variance,

Var[Y |X = x] = E
[
Y 2|X = x

]
− E[Y |X = x]2 = E

[
(Y − E[Y |X = x])2|X = x

]
.

Overall, conditional distributions behave the same as other distributions. The fixed values
can be treated as constants and we deal with the variable(s) left over.
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An important result going forward is the law of iterated expectations:

E[Y ] = EX [E[Y |X = x]],

which is to say that we can find the unconditional expected value of Y by averaging over all
the conditional expectations. To see this in the discrete case

EX [E[Y |X = x]] =
∑
x

E[Y |X = x]f(x)

=
∑
x

(∑
y

yf(y|X = x)
)
f(x)

=
∑
x

∑
y

y (f(x|Y = y)) f(y) Bayes’ rule

=
∑
y

yf(y)
(∑

x

f(x|Y = y)
)

=
∑
y

yf(y)1

= E[Y ]

Conditional distributions appear everywhere so keep your eyes peeled going forward.

0.4 Estimation and hypothesis testing

Let’s suppose that we had some guess as to what distribution f(x; θ) is. For now let’s
suppose it’s a normal distribution where θ = (µ, σ2) is a set of true, but unknown, population
parameters. Most of our goals in data analysis is to find good ways to guess θ from x. A
parametric approach is when we assume we know what f is. Two ways we might think about
estimating θ are to find point estimates of σ and µ. A point estimate, denoted θ̂ is a single
best guess of the parameter(s). Point estimates typically come with a standard error which
is the standard deviation of the sampling distribution of the estimate(s) θ̂. Alternatively we
might build an interval estimate which is a range of values that will contain the true value
θ with a pre-determined probability.

0.4.1 The sample mean and general properties of estimators

An estimator is a function that takes the data and produces an estimate. To estimate the
true but unknown µ we might come up with a few different approaches:
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1. µ̂ = x̄ = 1
N

∑N
i=1 xi

2. µ̂1 = x1

Intuitively we suspect that (1) is a better estimator, but how would we know? Some basic
properties we can consider are the finite sample properties. These properties hold regardless
of sample size. Later we will consider asymptotic properties (large sample properties).

Within a finite sample we tend to consider an estimator’s bias and efficiency An estimator
of θ is unbiased if the mean of its sampling distribution is θ, which is to say

E[θ̂] = θ

or
E[θ̂ − θ] = 0.

Unbiasedness is nice, but more than one estimator can be unbiased. Estimators (1) and
(2) are both unbiased, however, so this doesn’t get us far in this case. As such, we turn to
efficiency. Estimator θ̂1 is more efficient that θ̂2 if Var(θ̂1) < Var(θ̂2). Efficiency gives us some
bite on deciding between (1) and (2). Specifically, we showed above that variance of (1) is
σ2/N , while the same logic tells us that the variance of (2) is σ2. So long as N > 1 (1) is
more efficient.

What does efficiency actually mean? It means that on average estimates produced by a specific
estimator will be closer to that estimators expected value than. For unbiased estimators it
means that, while both (1) and (2) return the truth in expectation, (1) will produce estimates
that are closer to it. Let’s check it out

set.seed(1)
x <- replicate(1000, rnorm(5, mean=3, sd=1))
mu1 <- colMeans(x)
mu2 <- x[1,]
tblue <- rgb(red = 0, green = 0, blue = 1, alpha = 0.3)
tred<- rgb(red = 1, green = 0, blue = 0, alpha = 0.3)
hist(mu2, freq=F, col=tred, ylim=c(0,1), main="", xlab="estimates")
hist(mu1, freq=F, add=T, col=tblue)
legend("topright", legend=c(expression(hat(mu)[1]), expression(hat(mu)[2])),

col = c(tblue, tred), lty=1,lwd=2)
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Figure 8: Sampling distributions for µ̂1 and µ̂2

c(mean(mu1), mean(mu2))

## [1] 2.996812 2.961216

c(var(mu1), var(mu2))

## [1] 0.2145218 1.0622903

Both are centered at the truth, but even with N = 5 we see a notably tighter sampling
distribution.

There are two main schools of though on how to compare estimators. One is to find the
minimum variance unbiased estimator. The other is to find that the estimator with the lowest
mean squared error (MSE). The MSE of an estimator is defined as

MSE(θ̂) = Var(θ̂) + Bias(θ̂)2,

although sometimes we use the root-mean-squared error (RMSE) which is the square root of
the above. The former is more typical in classic treatments informs a lot of practices today,
but the latter is more trendy at the moment. One example that may be of note is using the
sample variance to estimate σ2. Traditionally we write the sample variance as

s2
x = 1

N − 1

N∑
i=1

(xi − x̄)2.

Note that N − 1 is used over the more intuitive N in order to make s2
x an unbiased estimate

of σ2. Let’s check it out

47



The expected value and variance of s2
x are given as:

E[s2
x] = σ2

Var[s2
x] = 2σ4

N − 1

Now let σ̂2 be the “intuitive” estimator given by 1
N

∑N
i=1(xi − x̄)2. The expected value and

variance of this estimator are given as:

E[σ̂2] = N − 1
N

σ2

Var[σ̂2] =
(
N − 1
N

)2 2σ4

N − 1

So on average the estimates will be attenuated, but they’ll have a lower variance:

library(matrixStats)
s2 <- colVars(x)
sigma2 <- colSums(t((t(x)-colMeans(x))^2))/5
hist(s2, freq=F, col=tred, ylim=c(0,.8), main="", xlab="estimates")
hist(sigma2, freq=F, add=T, col=tblue)
legend("topright", legend=c(expression(s[x]^2), expression(hat(sigma)^2)),

col = c(tred, tblue), lty=1,lwd=2)
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Figure 9: Sampling distributions for s2 and σ̂2

c(mean(s2), mean(sigma2))

## [1] 1.0494768 0.8395814
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c(var(s2), var(sigma2))

## [1] 0.5238803 0.3352834

c((mean(s2)-1)^2 + var(s2),(mean(sigma2)-1)^2 + var(sigma2))

## [1] 0.5263282 0.3610175

Here you can see that s2
x has an average value of about 1 (and more of a peak there), but

has a higher variance (see the longer tail). In contrast σ̂2 has an average less than 1 (about
N−1
N

= 0.8, as expected), but less variance and a lower overall MSE. As sample size increases
the differences diminish to the point where it doesn’t really matter.

0.4.2 Sampling distribution and hypothesis testing

If we continue to assume that the population is normally distributed we can say a few
more things about the sample mean and variance in finite samples. First, we can say that
(x̄− µ) ∼ N(0, σ2/N). To see this notice that x̄ is the sum of iid normal random variables
and as we said before the sum of normal random variables is normal. We’ve characterized the
distribution of x̄− µ completely, and if we know σ this becomes usable to answer interesting
questions.

Second, we can show that the scaled random variable N−1
σ2 s

2
x ∼ χ2

N−1. Roughly,

s2
x = 1

N − 1

N∑
i=1

(xi − x̄)2

= σ2

N − 1

N∑
i=1

(
xi − x̄
σ

)2

The inside portion is roughly the sum of squared standard normals, which as we noted above
is χ2 (NOTE: THIS IS NOT A REAL PROOF. It is in fact wrong because x̄ 6= µ. The real
proof relies on Cochran’s theorem, but this gives you a basic idea for where this comes from.)
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Now we go back to the distribution of x̄− µ to see if we can morph it into something usable.

x̄− µ ∼ N(0, σ2/N)
√
N(x̄− µ)/σ ∼ N(0, 1)

N − 1
σ2 s2 ∼ χ2

N−1
√
N(x̄− µ)/σ√
N−1
σ2 s2

x/N − 1
∼?? See transformation notes

√
N(x̄− µ)
sx

∼ tN−1 simplified

We can explore this visually, too.

set.seed(1)
library(matrixStats)
N <- 10
mu <- 45
sigma <- 5
x <- replicate(1000,rnorm(N, mu, sigma))
s <- colSds(x)
xbar <- colMeans(x)
par(mfrow=c(3,2))
hist(xbar, freq=F, breaks="Scott", xlab=expression(bar(x)),

main=expression(paste("Sampling distribution of ", bar(x))))
curve(dnorm(x, mean=mu, sd=sigma/sqrt(N)), add=T, col="red")
legend(x="topright", legend=c(expression(N(mu, sigma^2/N))),

col=c("red"), lty=1,lwd=2)
hist(xbar-mu, freq=F, breaks="Scott",xlab=expression(bar(x)-mu),

main=expression(paste("Sampling distribution of ", bar(x)-mu)))
curve(dnorm(x, mean=0, sd=sigma/sqrt(N)), add=T, col="red")
legend(x="topright", legend=c(expression(N(0, sigma^2/N))),

col=c("red"), lty=1,lwd=2)

hist((N-1)/sigma^2 * s^2, freq=F, breaks="Scott",
xlab=expression(frac(N-1,sigma^2)*s^2),
main=expression(paste("Sampling distribution of ", frac(N-1,sigma^2)*s^2)))

curve(dchisq(x, df=N-1), add=T, col="darkgreen")
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legend(x="topright", legend=c(expression({chi^2}[N-1])),
col=c("darkgreen"), lty=1,lwd=2)

hist((xbar-mu)/(sigma/sqrt(N)), freq=F, breaks="Scott",
main=expression(paste("Sampling distribution of ",

frac(bar(x)-mu, sigma/sqrt(N)))),
xlab=expression(sqrt(N)(bar(x)-mu)/sigma), ylim=c(0,.4))

curve(dnorm(x, mean=0, sd=1), add=T, col="red")
curve(dt(x, df=N-1), add=T, col="blue")
legend(x="topright", legend=c(expression(N(0, 1)), expression(t[N-1])),

col=c("red", "blue"), lty=1,lwd=2)
hist((xbar-mu)/(s/sqrt(N)), freq=F, breaks="Scott",

main=expression(paste("Sampling distribution of ",
frac(bar(x)-mu, s/sqrt(N)))),

xlab=expression(sqrt(N)(bar(x)-mu)/s), ylim=c(0,.4))
curve(dnorm(x, mean=0, sd=1), add=T, col="red")
curve(dt(x, df=N-1), add=T, col="blue")
legend(x="topright", legend=c(expression(N(0, 1)), expression(t[N-1])),

col=c("red", "blue"), lty=1,lwd=2)

hist((xbar-mu)/(s/sqrt(N)), freq=F, breaks="Scott", ylim=c(0,.02), xlim=c(2,4),
main=expression(paste("Sampling distribution of ",

frac(bar(x)-mu, s/sqrt(N)))),
xlab=expression(sqrt(N)(bar(x)-mu)/s))

curve(dnorm(x, mean=0, sd=1), from=1.7, add=T, col="red")
curve(dt(x, df=N-1), from=1.7, add=T, col="blue")
legend(x="topright", legend=c(expression(N(0, 1)), expression(t[N-1])),

col=c("red", "blue"), lty=1,lwd=2)

Now we can explore the world of hypothesis testing. Hypothesis testing is a framework for
answering yes/no questions that take the form is a a plausible value for the true but unknown
population parameter θ? Tests take the form a null hypothesis and an alternative
hypothesis such that

H0 : θ = a

HA : θ 6= a

where the alternative can be 6= (two tailed test) or < / > (one tailed). The Neyman-
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Pearson approach to hypothesis testing requires the analyst to form a test statistic and
compare the value of that statistic to a partition of statistic’s the sampling distribution (a
rejection region or an acceptance region). If the statistic falls in the rejection region,
the null hypothesis is rejected. Otherwise, the null is not rejected (despite the name, don’t
conclude that the null is accepted–it’s just not rejected). This obviously leads to four possible
outcomes

Null is... True False
Not rejected Good Type II error
Rejected Type I Error Good

For example, we might produce an estimate that is very far from the true parameter value.
This could lead us to make a Type 1 error. We obviously never know where we land on
the table, but we can quantify. The size of the test refers to the probability of type 1 error
and it is reflects by where we set the rejection region. A small rejection region (only reject
when we have very strong evidence against the null) will reduce the probability of a type
1 error. It will also increase the probability of type II error. The size is often denoted by
α ∈ (0, 1) where α ∈ {0.05, 0.10} are conventional choices. The power of a test is how likely
are we to reject a false null hypothesis. This is 1− Pr(Type II error) = 1− β. Once we fix a
significance level α we want to have a test that minimizes β (maximizes power). We will set
aside more thorough discussions of hypothesis testing, but you may come back to ideas like
power in courses on behavior or the causal inference class. Power is most frequently discussed
in experimental work where you have more control over sample sizes.

What we will say is that when you build a test statistic you do the following:

1. Set α
2. Assume the null hypothesis is true
3. Build a test statistic based on a true null and the sampling distribution of your estimate
4. Find the probability of observing a test statistic as or more extreme than what you

observe given a true null. This is called the p value. Note the p value of a one sided
test is half that of a two sided test. (we’ll draw some pictures)

5. If p < α your test statistic is in the rejection region. Otherwise it is not.

Effectively what this says is: Assume a true null hypothesis, is there enough evidence to
make that assumption highly unlikely? If so reject the null.

Moving on. Let’s recap: What do we have?

1. A null hypothesis that µ = µ0

2. A statistic x̄
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3. A sampling distribution x̄ ∼ N(µ, σ2/N)
4. A test statistic z =

√
N(x̄−µ0)

σ
.

5. A statistic s2 to use in place of σ2

6. A sampling distribution of (scaled) s2
x: N−1

σ2 s
2 ∼ χ2

N−1

7. A new test statistic based on s2
x: t =

√
N(x̄−µ0)

s
.

8. A distribution for the test statistic t ∼ tN−1.

Now we’re cooking. Let’s try an example by looking at some traffic data

type date 6th 13th diff location
1 traffic 1990, July 139246 138548 698 loc 1
2 traffic 1990, July 134012 132908 1104 loc 2
3 traffic 1991, September 137055 136018 1037 loc 1
4 traffic 1991, September 133732 131843 1889 loc 2
5 traffic 1991, December 123552 121641 1911 loc 1
6 traffic 1991, December 121139 118723 2416 loc 2
7 traffic 1992, March 128293 125532 2761 loc 1
8 traffic 1992, March 124631 120249 4382 loc 2
9 traffic 1992, November 124609 122770 1839 loc 1
10 traffic 1992, November 117584 117263 321 loc 2

Our research question is whether the amount of traffic on Fridays the 13th is different than
on another ordinary Friday. We do this by comparing traffic at 10 specific intersections on
Fridays the 13 and Fridays the 6th.
Our hypotheses become

H0 : µdiff = 0

HA : µdiff 6= 0

We find x̄ and s. Then we build our test statistic.

diffs <- c(698, 1104, 1037, 1889, 1911, 2416, 2761,4382,1839,321)
N <- length(diffs)
x.bar <- mean(diffs)
s <- sd(diffs)
t <- (sqrt(N)*x.bar)/s
pt(t, df=N-1, lower.tail = FALSE)*2 #explain this

## [1] 0.0008061844
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Here we find a p value less than 0.05 and conclude that we have enough evidence to reject
the null hypothesis. The evidence suggests that the number of accidents on Friday the 13th
is different from other Fridays. The sample mean of 1835.8 suggests that the number of
accidents is greater on the 13th.

0.4.3 Interval estimation

Interval estimation is different from point estimation in the sense that it provides an entire
range of plausible values of θ. These ranges are known as confidence intervals. However, we’ll
see in a second that there is a deep connection between confidence intervals and hypothesis
testing with point estimates. An interval estimate is often formed using a pivotal point (point
estimate) θ̂ plus/minus uncertainty

To build a parametric interval estimate you need three things:

1. A point estimate
2. The sampling distribution
3. The standard error of the point estimate
4. A level of “confidence” 1− α.

For the sample mean we have an estimate x̄ for a pivotal point and we know that the
transformation

√
N(x̄− µ)/s is distributed tN−1. To form confidence interval then we need

to construct an interval based on the idea that

Pr(a < g(θ̂; θ) < b) = 1− α.

Where g is the transformation that allows us to have a known distribution. For the sample
mean this gives us

Pr(a <
√
N(x̄− µ)/s < b) = 1− α

Pr(−x̄+ a
s√
N
< −µ < −x̄+ b

s√
N

) = 1− α

Pr(x̄− b s√
N
< µ < x̄− a s√

N
) = 1− α

Choosing the right values of a and b give you 1− α confidence. Note that confidence here
means something very specific. It refers to your confidence in the procedure. For 95%
confidence that means that we are confident that 95% of 95% confidence intervals will contain
the true θ. Any given confidence interval either has θ it is not so there is not a 95% chance
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that your estimated interval contains θ ex post (it does mean this a priori).

Now in order to find a and b we need to fix 1 − α and use the parametric distribution in
question. In this case let’s set 1 − α = 0.95 to get a 95% confidence interval. This means
that we need to cover 95% of the sampling distribution with the interval [a, b]. To put this
another we want to partition the sampling distribution into three parts (−∞, a), [a, b], and
(b,∞) such that they cover 2.5%, 95%, 2.5% of the density, respectively. With symmetric
distributions like the t and normal, this means that −a = b and we can find a for a normal
using

qnorm(.025)

## [1] -1.959964

About −1.96 for a and 1.96 for b. So for a normal 95% confidence interval you get

x̄± 1.96 s√
N
.

For a t you need to know the degrees of freedom. Let’s try one with at 90% CI.

set.seed(1)
x <- rnorm(10, mean=pi, sd=2)
x.bar <- mean(x)
se <- sd(x)/sqrt(10)
t.crit <- qt(.05, df=9)
c(x.bar+t.crit*se, x.bar-t.crit*se)

## [1] 2.501016 4.310980

good <- replicate(10000, {
x <- rnorm(10, mean=pi, sd=3)
x.bar <- mean(x)
se <- sd(x)/sqrt(10)
t.crit <- qt(.05, df=24)
(pi > (x.bar+t.crit*se)) & (pi< (x.bar-t.crit*se))

})
mean(good)

## [1] 0.8817

About 10% of the intervals do not contain the true value.
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There is an intimate connection between hypothesis testing and interval estimation. Let’s
return to the traffic data:

We can get to the same place as before using interval estimation

diffs <- c(698, 1104, 1037, 1889, 1911, 2416, 2761,4382,1839,321)
N <- length(diffs)
x.bar <- mean(diffs)
se <- sd(diffs)/sqrt(N)
t.crit <- qt(0.025, df=N-1, lower=FALSE)
c(x.bar - t.crit*se, x.bar+t.crit*se)

## [1] 994.5304 2677.0696

Now we conclude that the range of plausible differences between Fridays the 13th and Fridays
the 6th is between 995 and 2677 accidents. Notice that this range is all positive so we can
say that 0 (no differences) is not a reasonable guess of µ. That these approaches agree is not
an accident. A 1− α confidence interval is equivalent to a test where the probability of a
type 1 error is α.

0.4.4 The method of moments

The older framework for finding parameter estimates from parametric models. Method
of moments works by setting empirical moments equal to the theoretical moments of the
parametric distribution. As such we need to return to our old friend the moment generating
function. The number of theoretical moments we need depends on the number of parameters
we want to estimate. For example consider some data X1, . . . , XN that we believe to have
come from a uniform distribution. Further suppose that we know that the lower bound of
this distribution is 0 but we don’t know the upper limit. So we have that x1, . . . , xN are iid
U(0, θ) where we want to estimate θ.

We have 1 parameter so we need one moment. In this case we take the empirical moment x̄
and relate it to the theoretical moment given by E[X]. We don’t really need the mgf for this
one as E[X] = 1

2(θ + 0). As such we set these equal:

x̄ = 1
2(θ)

2x̄ = θ̂MoM.

So the moment estimator is twice the sample mean. Not an unreasonable approach, but
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set.seed(4)
X <- runif(5, min=0, max=100)
c(2*mean(X), max(X))

## [1] 79.17740 81.35742

It is possible to get an “impossible” estimate. Here we find that our best guess of θ would
make at least one of our observations impossible to observe. This is a rare, but possible
occurrence with some moment estimators. Moment estimators may be biased (this one isn’t).

Let’s try another example: Estimate the parameters µ and σ2 from a normal distribution.
Now we have two moments to solve for we will start with µ

x̄ = µ

x̄ = µ̂MoM.

awesome.

Now onto σ2. For this we need the second empirical moment 1
N

∑N
i=1 x

2
i and the second

theoretical moment given by E[X2]. Using the normal mgf, we find that:

E[X2] = µ2 + σ2

which is our second moment. Now we solve

µ2 + σ2 = 1
N

N∑
i=1

x2
i

σ2 = 1
N

N∑
i=1

x2
i + µ2

σ̂2
MoM = 1

N

N∑
i=1

(xi − x̄)2

which (as mentioned above) is a biased estimate (but better MSE than the sample variance
estimate).

0.4.5 The method of maximum likelihood

The method of maximum likelihood is probably the workhorse method for parametric models.
You’ll take a whole course on it next semester. We’ll cover the most basic aspects of it here
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and some properties later. Maximum likelihood asks the question: what parameter values for
parametric model f are most likely given the observed data. Specifically we want to know
the likelihood of parameter guess θ given observed X. For a sequence of independent data
x1, . . . , xN this becomes

L(θ|x) =
N∏
i=1

f(x|θ).

Where f is the pdf or pmf of the parametric model in question. We want to find the value of
θ that maximizes the function. More often it’s easier to deal with the log of this function.
Before doing that here are some important properties of logs

log(xy) = log(x) + log(y)

log
N∏
i=1

xi =
N∑
i=1

log(xi)

log(ex) = x

elog(x) = x

log(yx) = x log(y)

log(x/y) = log(x)− log(y)

log(x) = undefined, x < 0

log(0) = −∞

log(x) < 0, x ∈ (0, 1)

log(1) = 0

log(x) > 0, x > 1

Dx log(x) = 1/x > 0 Strictly increasing for x > 0

D2
x log(x) = −1/x2 < 0 Concave function

curve(log(x), from=0, to=10, n=100001)

Returning to the problem we have

L(θ|x) =
N∑
i=1

log (f(X|θ)) .

Let’s work on the uniform problem from above, here we have

f(x|θ) =


1
θ

x ∈ [0, θ]

0 otherwise.
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Figure 11: The log function

So our log-likelihood becomes

L(θ|x) =
N∑
i=1

− log (θ) xi ∈ [0, θ]

−∞ otherwise.

or

L(θ|X) =

−N log(θ) x ∈ [0, θ] ∀ i

−∞ otherwise.

We can ignore the N because it’s a constant. So what value of θ maximizes this function?
Note that L is strictly decreasing in θ (i.e., DθL(θ|X) = −N/θ where it is defined). So we
want the smallest value of θ, but only to a point. Only to what point? We don’t θ to be larger
than the sample values! Why? If we pick θ < max(X) then L(θ|X) = −∞ (this is called
a zero likelihood problem). So smallest value of θ that avoids this problem is max(X).
This is the maximum likelihood estimator.

Another way to think about this is to recast it as a simple constrained optimization problem

θ̂ = argmin
θ

(θ)

s.t. θ ≥ max(X)
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this is only satisfied at θ̂ = max(X) Also notice that this estimate is certainly biased, why?
Note that max(X) < θ with near certainty (although this bias will decease as N increases).
Finally note that if we had defined the uniform pdf to not include the end points

f(x|θ) =


1
θ

x ∈ (0, θ)

0 otherwise.

then the MLE doesn’t exist. At θ̂ = max(X) we now hit a zero likelihood problem. The ML
estimate can always improve so long as it gets arbitrarily close to max(X). This example
demonstrates that ML estimates won’t always exist for any given problem.

Now let’s consider the normal distribution. Recall that the normal pdf is given by

f(x|σ2, µ) = 1√
2πσ2

e−
1

2σ2 (x−µ)2

The log likelihood is then

L(σ2, µ|x) =
N∑
i=1

(
−1

2 log
(
σ2
)
− log(

√
2π)− 1

2σ2 (xi − µ)2
)

We can remove constant terms because they don’t matter for maximization

L(σ2, µ|x) = −N2 log
(
σ2
)
−

N∑
i=1

( 1
2σ2 (xi − µ)2

)

To find the maxima and minima we take derivatives and set them equal to 0. As such

DµL(σ2, µ|x) =
N∑
i=1

1
σ2 (xi − µ)

0 = 1
σ2

N∑
i=1

(xi − µ)

0 =
N∑
i=1

(xi − µ)

0 = Nµ+
N∑
i=1

xi

Nµ =
N∑
i=1

xi

µ̂MLE = 1
N

N∑
i=1

xi
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and
Dσ2L(σ2, µ|x) = 0 = − N

2σ2 + 1
2σ4

N∑
i=1

(xi − µ)2

N

2σ2 = 1
2σ4

N∑
i=1

(xi − µ)2

2σ4

2σ2 = 1
N

N∑
i=1

(xi − µ)2

σ̂2
MLE = 1

N

N∑
i=1

(xi − µ)2

The MLE estimate of µ is unbiased while the estimate of σ2 is biased.

A super cool thing about MLE is Invariance: If θ̂ is an maximum likelihood estimate of
θ then g(θ̂) is an MLE of g(θ). This is insanely useful. We’ll cover the other important
properties of MLE when we get to asymptotics.

In these two examples the estimates have closed form solutions. It is nice when this happens,
but rare. Most of the time you’ll need to use numerical optimization to solve the maximization
problem. This can be quite involved if the problem gets sufficiently complex. A real life
example: suppose we didn’t want to do calculus to find estimates of σ2 and µ above. We
could do the following

X <- rnorm(1000, mean=-2, sd=2) #mu=-2, sigma^2=4
log.lik <- function(theta, X){

# Log likelihood function for mean and variance of the normal
# inputs:
# theta: the parameter vector. theta[1] = mu, theta[2] =log(sigma^2)
# X: the data
# outputs: the negative of the log-likelihood
## Notes:
## 1. For numerical optimization you need the computer to be able
## to guess any value. estimating theta[2]= log(sigma^2) allows this.
## Now log(sigma^2) can be any real number, while exp(theta[2])=sigma^2
## will always be positive as required
## 2. optim is a minimizing program so we minimize the negative
## log-likelihood instead of maximizing the log-likelihood
mu <- theta[1]
sigma2 <- exp(theta[2])
N <- length(X)
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LL <- -(N/2) *log(sigma2) - 1/(2*sigma2)*sum( (X-mu)^2)
return(-LL)

}
gradient <- function(theta, X){

# gradient of the log likelihood function for mean and variance of
# the normal
# inputs:
# theta: the parameter vector. theta[1] = mu, theta[2] =log(sigma^2)
# X: the data
# outputs: the negative of first derivative of the log-likelihood wrt
# to theta[1] and theta[2]
## Notes:
## 1. For numerical optimization you need the computer to be able
## to guess any value. estimating theta[2]= log(sigma^2) allows this.
## Now log(sigma^2) can be any real number, while exp(theta[2])=sigma^2
## will always be positive as required
## 2. optim is a minimizing program so we minimize the negative gradient
mu <- theta[1]
sigma2 <- exp(theta[2])
N <- length(X)
Dmu <- -1/(sigma2)*sum(mu-X)
Dln.sigma2 <- -(N/2) + 1/(2*sigma2)*sum( (X-mu)^2 )
return(-c(Dmu, Dln.sigma2))

}
ML.ests <- optim(c(0,0), #starting guesses

fn = log.lik, gr=gradient, #functions
X=X, #fixed inputs
method="BFGS") #other stuff

ML.ests$par #MLE for mu and for Log(sigma^2)

## [1] -2.041597 1.440262

exp(ML.ests$par[2]) #this is still the MLE for sigma^2 INVARIANCE!

## [1] 4.221803

Note that in the above, the gradient function does not look exactly like the first derivative
we discussed above. This is because the parameters are now θ = (µ, log(σ2)). As such the
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gradient we supply to optim needs to be with respect to θ = (µ, log(σ2)). Gradients are
optional, but very helpful to most numeric optimization programs, I always recommend them
unless it’s too difficult to derive. In this example, we can reparameterize the log-likelihood in
terms of θ:

L(θ|x) = −N2 log
(
exp(θ[2])

)
−

N∑
i=1

(
1

2 exp(θ[2])
(
xi − θ[1]

)2
)

= −Nθ[2]

2 −
N∑
i=1

1
2eθ[2]

(
xi − θ[1]

)2

Dθ[1]L(θ|x) = −
N∑
i=1

1
2eθ[2]

2
(
θ[1] − xi

)

= −
N∑
i=1

1
σ2 (µ− xi)

Dθ[2]L(θ|x) = −N2 −
N∑
i=1

−1
2eθ[2]

(
xi − θ[1]

)2

= −N2 +
N∑
i=1

(xi − µ)2

2σ2

0.4.6 Large sample properties of estimators

That was a fun detour through estimation and testing. The last thing we’ll do in Math
Camp are some important results that help us understand the asymptotic properties of
estimators. We’ll start with a focus on sums Let Y = X1 + . . .+XN be a sum of iid random
variables where E[Xi] = µ and Var(Xi) = σ2. From the above we know that E[Y ] = Nµ and
Var(Y ) = Nσ2.

Finally we will need to be familiar with the Markov Inequality to get through some of
this. The Markov inequality states that for a non-negative random variable X and a positive
constant a, Pr(X > a) ≤ E[X]

a
. Intuitively, this follows from the following rearrangement of

terms

E[X] = Pr(X < a) E[X|X < a] + Pr(X ≥ a) E[X|X ≥ a]

≥ aPr(X ≥ a)

Pr(X ≥ a) ≤ E[X]
a

These inequalities follow because E[X|X ≥ a] ≥ a and Pr(X < a) E[X|X < a] ≥ 0
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We can now state a few important results.
Theorem 6 (Weak Law of Large Numbers) If X1, . . . , XN are iid with expectation µ

and variance σ2 (both finite) then for all ε > 0

lim
N→∞

Pr
(∣∣∣∣YN − µ

∣∣∣∣ ≥ ε
)

= 0

Note that in words this says that the random variable Y/N converges in probability to µ.
Convergence in probability is sometimes denoted Y/N p→ µ or with plim. What it means is
that for some positive ε and some value δ there is a sample size N such that for an N ′ > N

Pr(|Y/N − µ| > ε) < δ.

Proof. Let Z = (Y/N − µ)2 and consider a ε2 > 0. By the Markov inequality we have

Pr(Z ≥ ε2) ≤ E[(Y/N − µ)2]
ε2 .

We rewrite the left-hand side by taking the positive square root of both sides, and the
right-hand side is the variance of Y/N = σ2/N (this is now Chebyshev’s inequality)

Pr(|Y/N − µ| ≥ ε) ≤ σ2

Nε2 .

Now for any ε > 0, the right-hand side tends to 0 as N → ∞. As such the left-hand will
tend to 0 as well, which is what we needed to show.

The LLN justifies our “long run” approach to understanding probability. It tells that as we
observe more iid realizations of a random variable the mean of those realizations will converge
to the true expected value. Note that the LLN does not actually requires the finite variance
assumption. However, it makes the proof easier, which is why I included it.

Our next result is a central tenant of statistical analysis.
Theorem 7 (Central Limit Theorem) Let X1, . . . , XN be iid random variables with
expected value µ and variance σ2 (both finite), then for all x ∈ R

lim
N→∞

(√
N(Y/N − µ)

σ

)
∼ N(0, 1).

The proof here involves using moment generating functions (mgfs) to show that the mgfs of
the right hand side converge to the normal mgfs.
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To start, let X∗i = (Xi − µ)/σ. The X∗i are iid with mean 0 and variance 1. And let

Z = 1√
N

N∑
i=1

X∗i =
√
N(Y/N − µ)

σ
.

The mgf of X∗i is
M(s) = E[esX∗i ]

A full Taylor series expansion of this mgf around 0

M(s) = M(0) + sDsM(0) + 1
2s

2D2
sM(0) + 1

3!s
3D3

sM(0) + . . .

= 1 + sE[X∗i ] + 1
2s

2 E[X∗2i ] + 1
3!s

3D3
sM(0) + . . .

= 1 + 1
2s

2 + 1
3!s

3D3
sM(0) + . . .

Because the X∗i are iid we can describe that the mgf of Z, specifically we can apply theorems
4 and 5 to get:

MZ (s) =
N∏
i=1

M

(
s√
N

)

= M

(
s√
N

)N

=
(

1 + 1
2N s2 + 1

3!N3/2 s
3D3

sM(0) + . . .
)N

What happens to this in the limit? One fun fact that you may want to know is
Fact 1 Suppose we have a sequence aN such that limN→∞ aN = b then lim(1 + a/N)N = eb.

Let
aN = 1

2s
2 + 1

3!N1/2 s
3D3

sM(0) + . . . ,

what is the limit here as N →∞?

lim
N→∞

aN = lim
N→∞

(1
2s

2 + 1
3!N1/2 s

3D3
sM(0) + . . .

)
= s2

2 = b.

So now we can apply the fun fact to get

lim
N→∞

MZ(s) = es
2/2.

This is the standard normal mgf (µ = 0, σ2 = 1). This is not a complete proof, but it gives
you an idea as to what a full proof would entail.
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More importantly it tells us that regardless of the distribution of Xi the sample mean will
be normally distributed for large N . This means that we can use z tests for any hypothesis
about a true population mean for any underlying population so long as we have enough data.
For example, let’s look at a Beta(.2,10) the expected value is about 0.02.

#CLT demo
set.seed(1)
samples9 <- colMeans(replicate(1000, rbeta(9,shape1 = .2,shape2=10)))
samples25 <- colMeans(replicate(1000, rbeta(25,shape1 = .2,shape2=10)))
samples100 <- colMeans(replicate(1000, rbeta(100,shape1 = .2,shape2=10)))
samples900 <- colMeans(replicate(1000, rbeta(900,shape1 = .2,shape2=10)))
true.mu <- .2/(.2+10)
true.sigma <- sqrt(2/(10.2^2 * 11.2))
par(mfrow=c(2,2))
hist(samples9, freq=F, breaks="Scott", xlim=c(-.02,.1),

main=expression(N==9), xlab=expression(bar(x)))
curve(dnorm(x, mean=true.mu, sd=true.sigma/3), add=T, col="red")
hist(samples25, freq=F, breaks="Scott", xlim=c(-.005,.05), main=expression(N==25),

xlab=expression(bar(x)))
curve(dnorm(x, mean=true.mu, sd=true.sigma/5), add=T, col="red")
hist(samples100, freq=F, breaks="Scott", xlim=c(0.007,.035),

main=expression(N==100), xlab=expression(bar(x)))
curve(dnorm(x, mean=true.mu, sd=true.sigma/10), add = T, col="red")
hist(samples900, freq=F, breaks="Scott", main=expression(N==900),

xlim=c(0.015,.025), xlab=expression(bar(x)))
curve(dnorm(x, mean=true.mu, sd=true.sigma/30), add=T, col="red")
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Now that we’re in asymptotic land, we can introduce one new property of an estimator. An
estimator is consistent if it converges in probability to the true but unknown parameter.
An easy way to think about this is that the estimator is asymptotically unbiased and has
a variance that is vanishingly small as N increases. Note that biased estimators can be
consistent and that unbiased estimators can be inconsistent. Formally, an estimator is
consistent if and only if

θ̂n
p→ θ.

Or if its bias and variance both go to zero. In problem set 0, you will demonstrate consistency
for the MLE of the uniform problem we considered before. This will be generally true of
MLE estimators under very general conditions.
Theorem 8 (Consistency of Maximum likelihood estimators) Under some regularity
conditions on f(y; θ) the MLE θ̂ is consistent.

We won’t go into too much detail here in the interest of time, but we can sketch a heuristic
proof. Let’s assume that we have a unique MLE θ̂ and the log likelihood function

L(θ|y) = 1
N

N∑
i=1

log(f(yi|θ)).
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Now consider the true but unknown θ (for ease let’s call it θ∗). The law of large numbers
tells us that

1
N

N∑
i=1

log(f(yi|θ))
p→ Eθ∗ [log(f(Y |θ))].

We know that θ̂ is the maximum of the left hand side, we want to show that the maximum
of the right hand side is θ∗.

Let’s consider the right hand side in more detail. Specifically, let’s consider the gap between
the expectation of the log likelihood at the true value versus any other choice of θ:

Eθ∗ [log(f(Y |θ))]−Eθ∗ [log(f(Y |θ∗))] = Eθ∗ [log(f(Y |θ))−log(f(Y |θ∗))] = Eθ∗

[
log

(
f(Y |θ)
f(Y |θ∗)

)]
.

We’re going to now apply the second part of Jensen’s inequality which says that concave
(negative 2nd derivatives) functions g, E[g(x)] ≤ g(E[x]). Note that logs are concave so

Eθ∗

[
log

(
f(Y |θ)
f(Y |θ∗)

)]
≤ log

(
Eθ∗

[
f(Y |θ)
f(Y |θ∗)

])

≤ log
(∫ ∞
−∞

f(y|θ)
f(y|θ∗)f(y|θ∗)dy

)

≤ log
(∫ ∞
−∞

f(y|θ)dy
)

≤ log(1) = 0.

All this is to say that the gap between Eθ∗ [log(f(Y |θ))] and Eθ∗ [log(f(Y |θ∗))] is weakly
negative for any θ, so Eθ∗ [log(f(Y |θ))] obtains a maximum at θ∗. As such θ̂ converges to θ∗

under the law of large numbers.

We now know the large sample expected value of maximum likelihood estimates, but what
about the variance? Define the Fisher Information contained in a sample X1, . . . , XN as a
measurement of the amount of information contained in X about the unobserved parameter
θ. Note that if the log-likelihood L(θ|X) is sharply peaked with respect to θ than it is easy
to find the true value. In this case X provides a lot of information about θ. If L(θ|X) is very
flat with respect to different values of θ there is little-to-no information to be obtained from
X. We can formalize this thinking by defining the Fisher Information as

I(θ) = Eθ[DθL(θ|X)2],

which is the variance of the first order condition.
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Under some regularity conditions on f and L that you’ll learn about next semester it can be
shown that

I(θ) = −Eθ[D2
θL(θ|X)].

When the Fisher Information is large, it means that the likelihood is sharp at ML estimate
and the variance in our estimate is small (we’re more confident in θ̂). In the limit the variance
of the ML estimate convergences to

Var(θ̂n) p→ 1
I(θ) ,

this boundary is called the Cramér-Rao lower bound for an unbiased estimator and
represents the lowest possible variance that can be obtained for an unbiased estimator.
Putting this all together, we can say that as N increases, MLE will become best unbiased
estimator (no other unbiased estimator will have lower variance); with enough data you can’t
do better than MLE if you have the right parametric assumption. Additionally, ML estimates
(like the sample mean) will be asymptotically normal under these conditions (a result of the
central limit theorem and some other theorems we haven’t introduced yet).

To recap, under common conditions the maximum likelihood estimate of θ is consistent and
asymptotically normal such that

√
N(θ̂ − θ) d→ N

0,
(
I(θ)
N

)−1


θ̂
asy∼ N

(
θ, I(θ)−1

)
θ̂

p→ θ.

This means that we can test hypotheses about θ using z tests if N is large.

A brief aside now that we have the variance of an MLE estimate, we can use the delta
method to find the variance of a function or transformation of one or more estimates. Recall
that we estimated θ[2] = log(σ2) in place of σ2 so that optim could take guesses from the
entire real line for a parameter that must be positive. We can use the invariance property to
find the MLE, but that doesn’t help us with the variance. This is where the delta method
comes in.
Theorem 9 (The Delta Method) Let θn be a sequence of random variables such that√
N(θn − θ) d→ N(0, σ2), and g(θ) is a function such that Dθg(θ) is nonzero and finite, then

√
N(g(θn)− g(θ)) d→ N(0, σ2(Dθg(θ))2)

70



The main requirement for using the delta method is that we have a normally distributed
estimate that we want to transform. Note that the delta method is just an first order Taylor
approximation of g(θ̂) around it’s expected value E[θ̂]. Because this estimator is consistent
the approximation will get better as N increases.

g(θ̂) ≈ g(E[θ̂]) +Dθ̂g(E[θ̂])(θ̂ − E[θ̂])

E(g(θ̂)) ≈ g(E[θ̂])

Var(g(θ̂)) ≈
(
Dθ̂g(θ̂)

)2
Var(θ̂)

g(θ̂) asy∼ N(g(θ), Dθg(θ)2 Var(θ))

In our specific example this becomes:

Var(σ̂2) ≈
(
Dθ̂[2]

exp(θ̂[2])
)2

Var(θ̂[2])

≈ exp(θ̂[2])2 Var(θ̂[2]),

and we can apply that to our problem to the parameter and standard error we actually care
about.

#Redo the estimation but ask for a Hessian estimate too
ML.ests <- optim(c(0,0), #starting guesses

fn = log.lik, gr=gradient, #functions
X=X, #fixed inputs
hessian=TRUE, #ask it to estimate a hessian
method="BFGS") #other stuff

Hessian <- ML.ests$hessian
c(ML.ests$par[1], sqrt(1/(Hessian)[1,1])) #MLE for mu

## [1] -2.0415967 0.0649754

se.sigma2 <- sqrt(exp(ML.ests$par[2])^2 * 1/(Hessian)[2,2])
c(exp(ML.ests$par[2]), se.sigma2) #MLE for sigma2

## [1] 4.2218028 0.1888054
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1 Correlation and simple regression

We will begin our (real) time together with a discussion of what regression is and what it’s
good for. To start: simple regression is used describes the relationship between a single
independent variable X and a dependent variable y. Regression has three main uses that
we’ll encounter. It can be used to:

1. Predict values of y for new values of X that maybe we haven’t observed yet (e.g.,
forecasting election outcomes using unemployment rates or predict when a civil war
will begin)

2. Describe how do changes in y match changes in X (on average voters of color tend to
vote at lower rates than white votes)

3. Identify the treatment (causal) effect that a change in xi will have on values of
yi (i.e., How many more votes can a candidate get by spending another dollar, on
average?)

We will often have one or more of these goals in mind when conducting political science
research, and in some cases it makes sense for them to overlap. Other times, focusing on
one (say making the best forecast) may make another goal more difficult (like finding a
treatment effect). For example, a study that describes or identifies the relationship between
October unemployment and the incumbent vote share in November may help us make good
predictions about the election outcome. Alternatively, a Republican presidential candidate
may spend money in states where the Democratic candidate is also spending a lot of money
and as such we may predict that Republicans do worse in states where they spent money on
ads even if the true casual relationship is different.

When we discussed covariance and correlation of random variables during Math Camp we
said that they are measures of the linear relationship between X and y. As such, they will
form the basis of our discussion here. Recall that the true, but unknown, relationship between
X and y is unobserved to us. This population covariance is defined as

σxy = E[(X − µx)(y − µy)],

which we will estimate using the sample covariance

sxy = 1
N − 1

N∑
i=1

(xi − x̄)(yi − ȳ).

This extends our unbiased variance estimator s2 to the covariance case. Note that sxy is
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also an unbiased estimator of the population covariance, it is sign-interpreted, and values
of 0 suggest that there is no linear relationship between X and y in the population. The
drawback here is that covariance has weird units so we often look at correlation instead.

The population correlation is given as ρxy = σxy
σxσy

while its sample counterpart is given as
rxy = sxy

sxsy
. Some examples are shown with this figure. Correlation is bounded to be between

-1 and 1. Values further from 0 indicate stronger linear relations. Values at 0 indicate linear
independence. The magnitude of the variables does not affect the correlation as it is a unitless
measure. However, correlation still does not tell us everything we could want to know about
the relationship between X and y.

Figure 12: Various correlations

1.1 Simple regression

Consider predicting an incumbents vote share from based on the unemployment rate. For
example, suppose we have data on the unemployment rate nine months before the election.
One way we could form predictions is by using a model

yi = β0 + β1xi + εi. Assumption A1

Let’s take a moment to work through everything going on here, we have

1. Outcome variable yi: incumbent party vote share
2. Independent variable xi: unemployment rate 9 months before an election
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3. β0: a parameter that centers our model (intercept)
4. β1: a parameter that relates X and y (slope)
5. εi: a parameter that allows for distance between data points and the line formed by

the rest of the model (error term)

The error term is essential here as we know that our data will never form an exact line implied
by an error-less model. There is no perfect linear relationship between X and y for any this
or any other interesting question. Even presidents who face very similar economies will have
different outcomes through debates, gaffs, personality, foreign crises, shark attacks, weather,
sun spots, etc. In this case each εi represents a single draw from a population distribution of
all the other factors not included in our linear model.

Assumption A1 tells us that we relate X to y using a linear specification with all other factors
“pushed” into ε. This assumption puts the linear in linear models, but we’ll need a few more
assumptions to get anywhere interesting. Specifically,

Assumption A2 xi are fixed (not random variables).

Assumption A3 s2
x > 0 The variance in X is greater than 0.

Assumption A4 E[εi] = 0.

Assumption A5 Var[εi] = E[ε2
i ] = σ2

ε (called homoskedasticity).

Assumption A6 εi and εj are independent for i 6= j.

Assumption A7 εi are normally distributed.

These 7 assumptions form the classic regression model. The population regression model is
defined by three parameters (β0, β1, σ

2
ε). Our goal (in order to say predict vote share) is to

find estimates of these parameters (β̂0, β̂1 and σ̂2
ε). To produce these estimates we will follow

a simple “procedure.” For a given “guess” of the parameters we can produce predictions of
y (call them ŷ) and compare these predictions to the true y values. Prediction error then
becomes the difference between yi− ŷi = yi− (β̂0 +xiβ̂1). We want to minimize the prediction
error and since we don’t care if we over or underpredict (just that we get as close as possible)
we will use the squared prediction error to get rid of signs. Further if we treat all observations
equally we get the following optimization problem:

(β̂0, β̂1) = argmin
β0,β1

N∑
i=1

(yi − β0 − xiβ1)2.

This is to say we want to draw a line through our data that gets it as close as possible to

74



data as a whole, or that we want to minimize the total gap between reality (data) and model
(the regression line).

Using calculus we can solve this problem by taking the derivatives with respect to β0 and β1.
Starting with β0

Dβ0

N∑
i=1

(yi − β0 − xiβ1)2 = −2
N∑
i=1

(yi − β0 − xiβ1)

0 =
N∑
i=1

yi −
N∑
i=1

β0 −
N∑
i=1

xiβ1

= 1
N

N∑
i=1

yi −
1
N

N∑
i=1

β0 −
1
N

N∑
i=1

xiβ1

= ȳ − β0 − x̄β1

β̂0 = ȳ − x̄β1.

That’s a start, but we need to find β̂1 in order to sub it into the above.

Dβ1

N∑
i=1

(yi − β0 − xiβ1)2 = −2
N∑
i=1

xi(yi − β0 − xiβ1)

0 =
N∑
i=1

xiyi −
N∑
i=1

xiβ0 −
N∑
i=1

xixiβ1

= 1
N

N∑
i=1

xiyi −
1
N

N∑
i=1

xiβ0 −
1
N

N∑
i=1

xixiβ1

= 1
N

N∑
i=1

xiyi − x̄β0 −
1
N

N∑
i=1

x2
iβ1

1
N

N∑
i=1

xiyi = x̄β0 + 1
N

N∑
i=1

x2
iβ1

Insert the estimate of β0

1
N

N∑
i=1

xiyi = x̄ȳ − x̄2β1 + 1
N

N∑
i=1

x2
iβ1

β1 =
1
N

∑N
i=1 xiyi − x̄ȳ

1
N

∑N
i=1 x

2
i − x̄2

=
1

N−1
∑N
i=1(xi − x̄)(yi − ȳ)

1
N−1

∑N
i=1(xi − x̄)2
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After all that we are left with

β̂1 = sxy
s2
x

β̂0 = ȳ − x̄β̂1,

so long as s2
x > 0 (Assumption A3). Note that if s2

x = 0, then any (β̂0, β̂1) that solves
β̂0 = ȳ − x̄β̂1 will satisfy the first order conditions (i.e., there will be an infinite number of
estimates). However, so long as the relatively low-key condition that s2

x > 0 holds we will
have unique estimates. These estimates are called the Ordinary Least Squares estimates
of β0, β1. We will verify that the OLS estimates satisfy the second order conditions later.

An intuitive way to rewrite β̂1 is to exploit the relationship between correlation and covariance
to get

β̂1 = rxy
sy
sx
.

This approach makes the units of β̂1 even more clear and it also makes it clear that the
regression coefficient is just a scaled measure of linear correlation. We can interpret β̂1 as
the average increase in y for every 1 unit increase in X (i.e., β̂ is measured in y’s per X).
In our unemployment example, this becomes, “For every 1 percentage point increase in the
unemployment rate nine months before an election, the incumbent party vote share decreases
by β̂1 percentage points, on average.”

We still have one parameter left to pin down, σ2
ε . One place to start is by defining an estimate

of εi using Assumption A1.
ε̂i = yi − β̂0 − β̂1xi.

Recall that σ2
ε = Var(εi) by Assumption A5, which suggests the estimator:

σ̂2
ε = 1

N − 2

N∑
i=1

ε̂2
i = 1

N − 2

N∑
i=1

(yi − β̂0 − β̂1xi)2.

Much like using N − 1 in sample variance we use N − 2 to get an unbiased estimate.

1.2 Properties of the OLS estimator

We have our OLS estimates, are they any good? Remember from Math Camp that we have
some properties we can look at: Bias, Efficiency, Consistency, and Mean Squared Error. We’ll
consider all of these eventually, but lets start with bias. Recall the definition of bias for an
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estimator θ̂ is
bias(θ̂) = E[θ̂]− θ,

and an unbiased estimator has 0 bias.

Let’s start with the slope β̂1 and recall that by (Assumption A2) that xi is a constant (i.e.,
not a realization from a random variable). As such,

E[β̂1] = E
 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ)

1
N−1

∑N
i=1(xi − x̄)2


=

1
N−1

∑N
i=1(xi − x̄) E [(yi − ȳ)]
1

N−1
∑N
i=1(xi − x̄)2

E [(yi − ȳ)] = E
[
yi −

1
N

N∑
i=1

yi

]

= E
[
β0 + xiβ1 + εi −

1
N

N∑
i=1

(β0 + xiβ1 + εi)
]

= β0 + xiβ1 + E [εi]−
1
N

N∑
i=1

(β0 + xiβ1 + E [εi])

= β0 + xiβ1 −
1
N

N∑
i=1

(β0 + xiβ1)

= β0 + xiβ1 − β0 − β1x̄

= β1(xi − x̄)

E[β̂1] =
1

N−1
∑N
i=1(xi − x̄)β1(xi − x̄)
1

N−1
∑N
i=1(xi − x̄)2

= β1.

The OLS estimate of β1 is unbiased.

For β̂0:
E[β̂0] = E[ȳ]− E[β̂1]x̄

= 1
N

N∑
i=1

(β0 + xiβ1 + E[εi])− β1x̄

= β0 + β1
1
N

N∑
i=1

xi − β1x̄

= β0.

The OLS estimate of the constant is also unbiased. We’ll consider the other properties in
more detail when we consider multiple regression. For now let’s just note the variances (under
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assumptions A1-A6) are

Var(β̂1) = Var
 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ)

1
N−1

∑N
i=1(xi − x̄)2


=
(

σ2
ε∑N

i=1(xi − x̄)2

)
Var β̂0 = Var

(
ȳ − x̄β̂1

)
= σ2

ε

(
1
N

+ x̄2∑N
i=1(xi − x̄)2

)

Often times, we want to be able to test hypotheses about what the true value of β̂1 is in the
population regression. Under Assumptions A1-A7, these tests be formed using t statistics
such that:

β̂1 − b1

se(β̂1)
∼ tN−2

β̂0 − b0

se(β̂0)
∼ tN−2

Note that these look nearly identical to the t tests we considered above that take the form of

Estimate− Null Value
SE(Estimate) .

The individual values change, but not the form. Given what we know about t distributions
we can also note that as N increases these distributions will converge into standard normal
distributions. Note that the degress of freedom is N − 2 because we use 2 parameters (β0

and β1) to estimate σ2
ε .

1.3 Application

Let’s take a quick break to see an example of simple regression in comparative politics.

library(readstata13)
voting.data <- read.dta13("Rcode/datasets/econ.dta")
head(voting.data)

## country ccode elecyr votelead gr_an unem_an gr_m1_an unem_m1_an timeidx
## 1 Australia 1 1946 49.7 NA NA NA NA 1
## 2 Australia 1 1949 46.0 NA NA NA NA 2
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## 3 Australia 1 1951 47.6 NA NA NA NA 3
## 4 Australia 1 1954 38.6 NA NA NA NA 4
## 5 Australia 1 1955 39.7 NA NA NA NA 5
## 6 Australia 1 1958 37.2 NA NA NA NA 6

Here we have the vote share for the incumbent prime minister’s party in OECD countries.
Possible independent variables are growth and unemployment. Let’s look at a scatterplot of
vote share and growth

plot(votelead~gr_an, data=voting.data, xlab="Growth", ylab="Vote share")
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Figure 13: Scatterplot of economic growth and vote sharea across OECD Countries

A visual inspection doesn’t allow for a very clear understanding here. We can use some
statistics to summarize the data and tell a more coherent story. First, we can consider just
the basic correlation between the variables. The correlation is

with(voting.data, cor(votelead,gr_an, use="complete"))

## [1] 0.1041626

so we know that if there is a relationship, it appears to be positive. How about a regression?

voting.model <- lm(votelead~gr_an, data=voting.data)
summary(voting.model)

##
## Call:
## lm(formula = votelead ~ gr_an, data = voting.data)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -31.555 -7.393 2.164 7.671 23.197
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.8277 0.9975 32.910 <2e-16 ***
## gr_an 0.4313 0.2530 1.705 0.0894 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.44 on 265 degrees of freedom
## (119 observations deleted due to missingness)
## Multiple R-squared: 0.01085, Adjusted R-squared: 0.007117
## F-statistic: 2.907 on 1 and 265 DF, p-value: 0.08938

We can note from the scatter plot that both variables appear to be measured in percentage
points. So we can interpret our regression estimates with these units. Specifically, here we see
that a 1 percentage point increase in growth is associated with a 0.43 percentage
point increase in incumbent party vote share. The intercept β0 is the E[yi|X = 0],
which is to say that the vote share for a prime minister’s party in a country with no growth
is 32.83 percentage points, on average. If growth was at 5 percentage points some year, we
would expect that the incumbent party receives

32.83+0.43*5

## [1] 34.98

percent of the vote.

We can visualize our regression model

plot(votelead~gr_an, data=voting.data, xlab="Growth", ylab="Vote share")
abline(reg=voting.model)
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Again, the relationship is fairly flat, but positive.

Note that growth in measured during the entire election year. This measurement is slightly
unhelpful from a prediction standpoint, as we can’t make a prediction for a new election.
The data also contain a value of growth from the previous year. Let’s try the regression with
lagged growth as our predictor variable.

voting.model2 <- lm(votelead~gr_m1_an, data=voting.data)
summary(voting.model2)

##
## Call:
## lm(formula = votelead ~ gr_m1_an, data = voting.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30.663 -6.541 1.648 8.029 24.345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.4919 1.0978 29.60 <2e-16 ***
## gr_m1_an 0.4813 0.2750 1.75 0.0813 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.34 on 246 degrees of freedom
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## (138 observations deleted due to missingness)
## Multiple R-squared: 0.0123, Adjusted R-squared: 0.008284
## F-statistic: 3.063 on 1 and 246 DF, p-value: 0.08133

Interestingly, the effect sizes are about the same. Now we see that, on average, a one
percentage point increase in growth the year before an election is associated with a 0.48
percentage point increase in vote share. Finally, we can conduct a similar analysis with
unemployment

plot(votelead~unem_m1_an, data=voting.data, xlab="Unemployment", ylab="Vote share")
voting.model3 <- lm(votelead~unem_m1_an, data=voting.data)
summary(voting.model3)

##
## Call:
## lm(formula = votelead ~ unem_m1_an, data = voting.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.356 -6.516 1.875 7.873 23.418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.6196 1.2612 29.829 <2e-16 ***
## unem_m1_an -0.3870 0.1756 -2.204 0.0285 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.65 on 222 degrees of freedom
## (162 observations deleted due to missingness)
## Multiple R-squared: 0.02142, Adjusted R-squared: 0.01701
## F-statistic: 4.858 on 1 and 222 DF, p-value: 0.02854

abline(reg=voting.model3)
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Here we see that the correlation (and thus the regression line) are negative: higher levels of
unemployment are associated with an average decrease in the incumbent party vote share.
Specifically, for every 1 percentage point increase in last year’s unemployment rate there is,
on average, a 0.39 percentage point decrease in the incumbent party vote share.

In these examples there a few aspects of the simple regression model we might find limiting:

1. At this point we only know how to consider one independent variable per regression. A
better model might have both growth and unemployment

2. While not a major concern here, we might eventually want to consider variables with
non-linear effects on y

3. We made some very strong and questionable assumptions regarding fixed regressors,
normal errors, homoskedasticity, and independence of errors

4. If the regressors are themselves random variables we have to worry about how that
effects our results on bias.

We can solve all of these with the linear model, but it’s going to require some math! But
some bad news, even just adding a second independent variable makes all of the above algebra
very hard. Solving the FOC to find the OLS estimates, while possible is a mess with ordinary
algebra. To make our life a lot easier we’re going to take a detour into Matrix Algebra
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2 Linear Algebra

Linear algebra (also called matrix algebra) provides us with a very useful set of tools for
understanding linear models. We will build up from the most basic parts here.

2.1 Vectors

A vector of length N is a collection of N numbers containing elements v = (v1, v2, . . . , vN).
One way to think about vector is a point in an N dimensional space where each element
denotes a position along a particular axis. As such the zero vector is denoted 0 = (0, 0, . . . , 0).
This may be confusing, but context should usually make it clear whether 0 is a scalar or
vector.

We can perform basic operations on vectors with vectors or vectors with scalars. Let a be a
scalar and v a vector then we can perform the following operations

1. Addition v + a = (v1 + a, . . . , vN + a) = (vi + a)Ni=1

2. Subtraction v − a = (v1 − a, . . . , vN − a) = (vi − a)Ni=1

3. Multiplication v × a = (v1 × a, . . . , vN × a) = (vi × a)Ni=1

4. Division v/a = (v1/a, . . . , vN/a) = (vi/a)Ni=1

Operations on two vectors require that they be the same length

1. Addition v + w = (v1 + w1, . . . , vN + wN) = (vi + wi)Ni=1

2. Subtraction v − a = (v1 − wN , . . . , vN − wN) = (vi − wi)Ni=1

Element-wise multiplication and division are not the default way we think about vectors
and need to be specified as special operations when the arise. Let v, w, and x be length N
vectors and let a and b be scalars. Some additional properties of vectors and scalars are

Zero is zero v + 0 = 0 + v = v

Associative property (v + w) + x = v + (w + x)

Commutative property v + w = w + v

Distributive law 1 a(v + w) = av + aw

Distributive law 2 (a+ b)v = av + bv

Distributive law 3 (ab)v = a(bv)
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All the additions can also be subtractions. For example, let v = (5, 8, 5) and w = (8, 1, 4).
We can subtract v − w = (−3, 7, 1).

2.2 Matrices

A matrix is a collection N ×M elements ordered into rows and columns such that

A =


a11 a12 . . . a1M

a21 a22 . . . a2M
... ... ... ...
aN1 aN2 . . . aNM

 .

As before we use 0 to refer to a special case where all elements are 0

0 =


0 0 . . . 0
0 0 . . . 0
... ... ... ...
0 0 . . . 0

 .

A square matrix is any matrix where N = M (same number of rows and columns). A special
square matrix is a type of “one” matrix called the identity matrix. The identity matrix, I,
is a square matrix where all the diagonal elements are 1 and the off-diagonals are 0.

I =


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

 .

Sometimes we will use the notation IN to denote an identity matrix of size N × N , while
othertimes we will just imply the size from the context.

The transpose of a matrix is an operation that “flips” a matrix along its diagonal. For
example the transpose of the N ×M matrix A from above is the M ×N matrix denoted A′

where [A′]ji = [A]ij for i = 1, . . . , N and j = 1, . . . ,M . For example let A =
1 4

3 2

, then
A′ =

1 4
3 2

′ =
1 3

4 2

.
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A matrix is symmetric when A = A′. Put another way [A]ij = [A′]ji for all i, j. The zero
matrix and the identity matrix are symmetric, while the matrix in the last example is not.

A <- matrix(c(1,3,3,5), nrow=2)
A

## [,1] [,2]
## [1,] 1 3
## [2,] 3 5

isSymmetric(A)

## [1] TRUE

A == t(A)

## [,1] [,2]
## [1,] TRUE TRUE
## [2,] TRUE TRUE

B <- matrix(c(1,3,-3,5), nrow=2)
B

## [,1] [,2]
## [1,] 1 -3
## [2,] 3 5

isSymmetric(B)

## [1] FALSE

B == t(B)

## [,1] [,2]
## [1,] TRUE FALSE
## [2,] FALSE TRUE

I = diag(4)
I

## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
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## [4,] 0 0 0 1

isSymmetric(I)

## [1] TRUE

2.2.1 Matrix addition

The addition function is only defined for two cases: Matrix with a scalar or Two matrices of
the same size. For the former a matrix plus or multiplied by a scalar performs that operation
on every element of the matrix, such that for scalar a and matrix A we have [aA]ij = a[A]ij

Suppose that A and B are both N ×M matrices, then their sum is a matrix A + B with
elements [A + B]ij = [A]ij + [B]ij for i = 1, . . . , N and j = 1, . . . ,M . The difference is
similarly defined with A−B having elements [A−B]ij = [A]ij − [B]ij.

Some properties of matrix addition/subtraction for identically sized matrices A, B, and C
and scalars a and b

Zero is zero A+ 0 = A− 0 = A

Commutative property A+B = B + A

Associative property (A+B) + C = A+ (B + C)

Distributive property 1 a(A+B) = aA+ aB

Distributive property 2 (a+ b)A = aA+ bA

Transpose property (A+B)′ = A′ +B′

For example

A = matrix(c(1,4,9,-2), nrow=2)
B = matrix(c(2,0,-10,1), nrow=2)
A

## [,1] [,2]
## [1,] 1 9
## [2,] 4 -2

B

## [,1] [,2]
## [1,] 2 -10
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## [2,] 0 1

A+B

## [,1] [,2]
## [1,] 3 -1
## [2,] 4 -1

2.2.2 Matrix multiplication

As we implied above, multiplication means something slightly different than what you may
be used to in the world of matrices and vectors. Let A be an N ×K matrix and B a K ×M
matrix. The product of A and B is denoted AB with elements

[AB]ij =
K∑
k=1

[A]ik[B]kj, i = 1, . . . N ; , j = 1, . . . ,M.

Note that AB is an N ×M matrix and that matrix multiplication is only defined when the
number of columns in A matches the number of rows in B. Further from the definition we
see that the ijth element of AB is the dot product (see below) of the ith row of A with the
jth column of B. In other words the “inside” dimensions have to align, while the product’s
dimensions match the “outside” dimensions.

We can consider some properties of matrix multiplication. Let A, B, and C be matrices with
appropriate dimensions and a be a scalar.

Zero is zero A0 = 0

One is one AI = A

Associative property (AB)C = A(BC)

Distributive property 1 (A+B)C = AC +BC

Distributive property 2 A(aB) = aAB

Transpose property (AB)′ = B′A′ and generally
(∏N

i=1Ai
)′

= ∏N
i=1A

′
N−i+1

Important: matrix multipication is associative, but not communtative! That is property 3
is true, but AB does not have to (and generally won’t) equal BA. As such we can move
parentheses around without too much trouble, but be careful with the ordering of matrices.
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For example,

A =
1 −4

2 0


B =

 −1
0.25


AB =

1×−1 +−4× 0.25
2×−1 + 0 ∗ 0.25


=
−2
−2



A <- matrix(c(1,2,-4,0), nrow=2)
B <- matrix(c(-1, 0.25), nrow=2)
A %*% B

## [,1]
## [1,] -2
## [2,] -2

Unless otherwise stated we will assume that all vectors are column vectors (N × 1 matrix).
So the vector v is

v =


v1
...
vN


and its transpose is a row vector. We can multiply a row vector by a column vector of the
same size to find

x′y =
[
x1 x2 . . . xN

]

y1

y2
...
yN

 =
N∑
i=1

xiyi.

This operation is sometimes called the inner product or dot product of two vectors and is
frequently denoted as x · y.

The dot product is an interesting operator that is frequently useful. One important property
here is that x′y = y′x, which can be helpful for finding new properties and simplifications. The
dot product can also be used to define distance where

√
(x− y)′(x− y =

√∑N
i=1(xi − yi)2
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is the commonly used Euclidean distance between x and y (as in the Pythagorian theorem
when N = 2).

Note, we now have enough new tools to represent the multiple regression problem in matrix
notation. Let β = (β0, β1, . . . , βm) be the length k = m+ 1 vector of regression coefficients,
and let xi = (1, xi1, xi2, . . . , xim) be a length k vector representing m independent variables.
We can write the regression objective function as

N∑
i=1

(yi − β′xi)2 =
N∑
i=1

(yi − β0 − β1xi1 − . . .− βmxim)2 .

Note that we have a leading 1 in xi to represent the constant term. We can move this from
vector into matrix notation with relative ease now.
Define

X =


1 x11 . . . x1m

1 x21 . . . x2m
... ... ... ...
1 xN1 . . . xNm

 ,

and now the OLS objective function is

(y −Xβ)′(y −Xβ).

This is a start, but we need some more technology before we can do anything with this
representation.

2.3 Linear equations

Consider a system of N linear equations:

a11x1 + a12x2 + . . .+ a1MxM = b1

...

aN2x1 + aN2x2 + . . .+ aNMxM = bN .

Note that given the above, we can rewrite this system in matrix notation

Ax = b,
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where A is an N ×M matrix, x is length M vector, and b is a length N vector. In a system
of linear equations we tend to think of A and b as known and x has a value we need to solve
for.

For example, consider a system of two equations and two unknowns

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2.

For fixed values of A and b we can draw this system as a pair of lines. If the lines intersect at
exactly one point then we have a unique solution for x. If the lines are parallel, there are no
solutions. Finally, if the lines are identical, there are an infinite number of solutions.

As a more concrete example consider:

2x1 − 4x2 = 7

3x1 + 8x2 = 14.

We can solve these by first noting that x2 = 2x1−7
4 and plugging this into equation 2 we find

that x1 = 4. Plugging this into equation 1 we then find x2 = 1/4. Here there is a unique
solution.

curve((2*x-7)/4, from=2, to=6)
curve((14-3*x)/8, from=2, to=6, add=TRUE)
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Now consider:

1.5x1 + 4x2 = 3

3x1 + 8x2 = 14

As before we start with x2 = 3−1.5x1
4 . Plugging this into equation 2, however, produces the

nonsense result 6 = 14. There is no solution to these equations, as the lines are parallel.

curve((3- 1.5*x)/4, from=6, to=10, ylim=c(-3,-1/2))
curve((14-3*x)/8, from=6, to=10, add=TRUE)
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Now consider:

1.5x1 + 4x2 = −3

3x1 + 8x2 = −6

As before we start with x2 = −3−1.5x1
4 . Plugging this into equation 2, however, produces the

“too much sens” result −6 = −6. There are an infinite number of solution to these equations:
they’re the same! The points (-2,0),(-4,3/4), (0,-3/4) are all valid solutions.

curve((-3- 1.5*x)/4, from=6, to=10, lwd=6, lty="dashed", col="red")
curve((-6-3*x)/8, from=6, to=10, add=TRUE, col="blue")
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But let’s go back to a system with a unique solution:

2x1 − 4x2 = 7

3x1 + 8x2 = 14.

We can solved this algebraically, but note that we can also write it in matrix form:

2 −4
3 6

 x1

x2

 =
 7

14

 .
Can we find solutions using matrix algebra?

2.4 Matrix inversion

Yes! Define the inverse of a square matrix A as the matrix A−1 such that AA−1 = A−1A = I.
This is as close as we get to matrix division. A few facts about inversion:

1. Only square matrices can be inverted
2. If an inverse exists, it is unique
3. If an inverse doesn’t exist, then the matrix is said be singular or non-invertable
4. The inverse of a 1× 1 matrix is A−1 = [a11]−1 = [1/a11]
5. The inverse of a size N diagonal matrix A is diagonal with non-zero elements (1/aii)Ni=1

93



6. The inverse of a nonsingular 2× 2 matrix A is

A−1 = 1
a11a22 − a21a12

 a22 −a12

−a21 a11

 .
7. If A is invertable than A′ is invertable and (A′)−1 = (A−1)′

Further, suppose that A and B are both invertable matrices, then

10. AB is invertable
11. (AB)−1 = B−1A−1

Now let’s return to our system of linear equations: Ax = b. If A is non-singular, then
x = A−1b provides the unique solution to these equations. If the number of equation N

is less than the number of unknowns M then there will be no solutions, while if there are
more unknowns than equations M > N there will be an infinite number of solutions. The
exception to this is if the equations are redundant. In which case A will have a rank less
than N . The rank of a matrix is a measure of how many linear independent rows it has.
Note that in the above example we produced a singular matrix by making one row just twice
the other (clearly not linear independent). When the rank of A is equal to the number of
rows in A we say that A is full rank.

To measure linear independence consider a row ai in A. If ai is a linear combination of the
other rows a−i then we can write ai = ∑N

j 6=i cjaj, where c’s are constants. The matrix A is
full rank if we can’t find a set of constants for any row to make it a linear function of the

other rows. Consider the matrix A =
1.5 4

3 8

. Note that the second row is just double the

first, or to put it another way a2 = 2a1, so A has rank 1. If we try and invert this matrix we
find that the denominator is 1.5× 8− 4× 3 = 0, this matrix is singular.

Going back to a system with a unique solution:

2x1 − 4x2 = 7

3x1 + 8x2 = 14.
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The matrix form of this problem will have full rank, and we can solve for X

A =
1.5 4

3 8


b =

 7
14


x =

x1

x2


Ax = b

A−1Ax = A−1b

x = A−1b

A <- matrix(c(2,3,-4,8), nrow=2)
A

## [,1] [,2]
## [1,] 2 -4
## [2,] 3 8

qr(A)$rank #check the rank

## [1] 2

b <- c(7,14)
solve(A) %*% b

## [,1]
## [1,] 4.00
## [2,] 0.25

## singular case
A <- matrix(c(1.5,3,4,8), nrow=2)
A

## [,1] [,2]
## [1,] 1.5 4
## [2,] 3.0 8
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qr(A)$rank #check the rank

## [1] 1

try(solve(A) %*% b)

## Error in solve.default(A) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0

2.5 Determinants

The determinant of a matrix A is denoted det(A) or sometimes |A|. For a 1 × 1 matrix
A = [a] the determinant is det(A) = a. For a 2× 2 matrix

A =
a11 a12

a21 a22

 ,
the determinant det(A) = a11a22 − a12a21, look familiar? The determinant of a matrix is 0 if
and only if the matrix is singular.

Other properties include.

1. det(AB) = det(A) det(B)
2. det(I) = 1
3. det(A−1) = det(A)−1

2.6 Eigenvalues

A complex, non-zero vector v is an eigenvector of a square matrix A if there exists a
(possibly) complex constant λ such that Av = λv, where λ is called an eigenvalue. For an
N × N square matrix there will be N eigenvectors (each of length N) and N eigenvalues.
These values may not be unique. When A is symmetric the eigenvalues will be real numbers,
otherwise they may be complex.

Lets rewrite the identity Av = λv to be (A− λI)v = 0. Recall that v is non-zero, this implies
that the matrix A− λI must be singular (non-invertable). To see this suppose that A− λI
is invertable and we will derive a contradiction. Start by front multiplying by the inverse and
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get
(A− λI)−1(A− λI)v = (A− λI)−10

Iv = 0

v = 0,

which contradicts v being non-zero. Because we have found a contradiction, it must be that
A− λI is singular and as such det(A− λI) = 0. We can exploit this relationship to find all
the eigenvalues by solving det(A− λI) = 0 for λ. In the 2× 2 case this gives us

det(A− λI) = (a11 − λ)(a22 − λ)− a12a21 = 0

= λ2 − λ(a11 + a22) + a11a22 − a12a21 = 0,

which is a quadratic equation wrt to λ meaning there will be two solutions, one or more of
which may be complex.

For example let A =
2 1

1 2

. Using the above, we will see that eigenvalues solve λ2−4λ+3 = 0.

The quadratic formula tells us that λ = 1 or λ = 3. These are the eigenvalues of A. We can
find the vector associated with the first eigenvalue λ(1) = 1 by solving the equations

2 1
1 2


︸ ︷︷ ︸

A

v1[1]

v1[2]


︸ ︷︷ ︸

First eigenvector v1

= 1︸︷︷︸
First eigenvalue λ1

v1[1]

v1[2]


︸ ︷︷ ︸

First eigenvector v1

.

Solving these we end up with two identical equations,

v1[1] = −v1[2]

v1[1] = −v1[2]

As such we can say that the first eigenvector is

v1 = c1

 1
−1


where c1 is a constant. Eigenvectors are only identified up to a constant multiplier as you
might suspect by the original identity Av = λv. Multiplying/dividing by a constant does not
change this result. Repeating this exercise of λ2 = 3 we get

v2 = c2

1
1

 .
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A = matrix(c(2,1,1,2), 2)
eigen(A)

## eigen() decomposition
## $values
## [1] 3 1
##
## $vectors
## [,1] [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068

# R's eigenvector here set the constants to 1/sqrt(2) more on this below
eigen(A)$vectors*sqrt(2)

## [,1] [,2]
## [1,] 1 -1
## [2,] 1 1

Note that we can use eigenvalues to calculate determinants: det(A) = ∏N
i=1 λi where λi is the

ith eigenvalue of A. A singular matrix will always have at least 1 zero eigenvalue and the
rank of matrix equal to the number of non-zero eigenvalues. Finally, if A is invertable with
ith eigenvalue λi then A−1 an ith eigenvalue equal to 1/λi

det(A)

## [1] 3

prod(eigen(A)$values)

## [1] 3

eigen(solve(A))$values

## [1] 1.0000000 0.3333333

As another example consider the singular matrix A =
1 1

2 2

. This matrix is singular because

the second row is a multiple of the first. We can find the eigenvalues solve λ2− 3λ = 0, which
has solutions as 0 and 3.

Another useful property of eigenvalues is that they can be used to decompose some matrices.
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A square matrix A is called diagonalizable if it has an eigenvalue decomposition A =
V ΛV −1, where V is amatrix where the ith column is the ith eigenvector of A and Λ = λI is
a diagonal matrix of associated eigenvalues. The matrix A will be diagonalizable if it does
not have any repeated eigenvalues. All real symmetric matrices are diagonalizable.
Indeed when A is symmetric we can choose constants c such that such that we have V −1 = V ′.

Let’s go back to A =
2 1

1 2

. Here V =
 c1 c2

−c1 c2

 and Λ =
1 0

0 3

. We can quickly find

V −1 = 1
2c1c2

c2 −c2

c1 c1

. Now we verify that

V ΛV −1 = 1
2c1c2

 c1 c2

−c1 c2

 1 0
0 3

c2 −c2

c1 c1

 =
2 1

1 2

 .
Note that choosing c1 = c2 = 1/

√
2 gives us V ′ = V −1.

A symmetric matrix M is said to be idempotent if MM = M . Idempotent matrices tend
to have interesting properties.
Theorem 10 If M is symmetric and idempotent then its eigenvalues are all 0 or 1.

Proof. Because M is symmetric we can use eigenvalue decomposition to rewrite M = CΛC ′

where CC ′ = C ′C = I. As such we have

CΛC ′ = M = MM = CΛC ′CΛC ′ = CΛΛC ′.

This implies that Λ = ΛΛ. Since Λ is diagonal, this only works for λi ∈ {0, 1}.

More importantly for us later though is the following:
Theorem 11 Let M be a symmetric and idempotent matrix of size N and let x be a vector
of iid standard normal random variables. Then x′Mx ∼ χ2

p where p = rank(M)

Proof. As before, we note that M is an N×N symmetric and has a eigenvalue decomposition
to write M = CΛC ′ where CC ′ = C ′C = I. This gives us x′Mx = (C ′x)′ΛC ′x. We
know that C ′x is normally distributed because it is a linear combination normal random
variables. Further we know that E[C ′x] is 0 and it has variance C ′IC = I. Thus we have
that y ∼ N(0, I) and x′Mx simplifies into ∑N

i=1 λiy
2
i . Since M is idempotent λi ∈ {0, 1} for

all i and, as mentioned above, the number of non zero eigenvalues is p. This means that λ is
composed of p 1s and N − p zeros. Since y is the sum of squared standard normals it will be
distributed χ2

p.
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Finally, define the trace of a square matrix as the sum of its diagonal elements tr(A) =∑N
i=1[A]ii. One fun fact is that tr(A) = ∑

i λi or that the trace is the sum of the eigenvalues.
Some additional properties of the trace include:

1. tr(A+B) = tr(A) + tr(B)
2. tr(cA) = ctr(A)
3. tr(AB) = tr(BA)

2.7 Quadratic representation

A symmetric matrix A is positive (semi) definite if for all x 6= 0, x′Ax > 0 (x′Ax ≥ 0). In
regression we will often be dealing with positive (semi) definite matrices. We can generalize
the idea of a “square root” that applies to positive scalars to matrices using the Cholesky
decomposition.1 Specifically, we say that a semi-positive definite matrix A has a Cholesky
Decomposition formed by a lower-triangular matrix L such that A = LL′. Note that if A
admits this decomposition and we let y = L′x then we can verify that x′Ax = y′y ≥ 0, as y′y
is an inner product. Cholesky decompositions are often written as chol(A) or A1/2. If A is
positive definite, this decomposition will be unique (no guarantees for positive semi-definite).

Further, a symmetric positive (semi) definite matrix will have all (weakly) positive eigenvalues
and determinant. Additionally, if A is a symmetric, positive definite, and invertable matrix,
then its inverse is symmetric and positive definite as well. To see this consider A = LL′,
which means that A−1 = (L′)−1L−1 and consider any vector x 6= 0 and y = L−1x. This gives
us x′(L′)−1L−1x = (L−1x)′L−1x = y′y, which is what we had to show.

A

## [,1] [,2]
## [1,] 2 1
## [2,] 1 2

chol(A) #note R returns it as an Upper triangle U=L'

## [,1] [,2]
## [1,] 1.414214 0.7071068
## [2,] 0.000000 1.2247449

1This is not the only way or even the most common way to think about matrix square roots, but it will
be good for us.
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t(chol(A)) %*% chol(A)

## [,1] [,2]
## [1,] 2 1
## [2,] 1 2

chol(solve(A)) #not an error

## [,1] [,2]
## [1,] 0.8164966 -0.4082483
## [2,] 0.0000000 0.7071068

2.8 Vector calculus and optimization of multiple variables

We now consider some rules for calculus on vectors. Throughout this section we will focus on
a scalar z, a vector of K variables x, and a vector of L variables y.

Let z = f(x) be a function that inputs x and returns a single value X. You can imagine the
regression objective function that inputs guesses of β and returns the sum of squared errors.
The derivative Dxf(x) is called the gradient (sometimes denoted ∇f(x)). The gradient is
the vector of first derivatives of f with respect to each element of x, such that

Dxf(x) =


Dx1f(x)

...
DxKf(x)

 .

The Jacobian is a special case of first derivatives for when we have a mapping that takes a
vector as an input and returns a vector as an output. For example let y = g(x) take the K
length input X and return the L length output y. The Jacaboian becomes

J(x) = Dxg(x) =


Dx1g(x)1 Dx2g(x)1 . . . DxKg(x)1

Dx1g(x)2 Dx2g(x)2 . . . DxKg(x)2
... ... ... ...

Dx1g(x)L Dx2g(x)L . . . DxKg(x)L


Where the notation Dxkg(X)` says to take the partial derivative of the `th output from g(X)
with respect to the kth input Xk. In essence, the Jacobian is a matrix where each row is the
gradient for the `th output of the function (or each column is the derivative with respect to
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a specific input).

All the basic calculus rules like the product rule and the “chain” rule still hold (i.e.,
D(f(g(x))) = Df(g(x))Dg(x) regardless of if x is a single variable or a vector and re-
gardless of if f or g return single values or vectors). Some additional properties (supposing
that everything here exists)

1. Dxf(x′) = Dxf(x)′

2. Dx(Ax+ b) = A

3. J(g(X))−1 = J(g−1(y)) for y = g(X) (Inverse function theorem)
4. Dx(x′x) = 2x′

5. Dx(x′Ax) = x′(A+ A′)

The last two are easy to show using the product rule:

Dxf(x)′g(x) = f(x)′Dxg(x) + g(x)′Dxf(x).

2.8.1 Optimization

Now that we have some calculus we want to use it for optimization. Let f(x) be a function
that returns a single value from a vector x that is twice continuously differentiable. We write
the gradient, as we did above

Dxf(x) =


Dx1f(x)

...
DxKf(x)

 ,
and the second derivative is called the Hessian (we saw this a little bit at the end of math
camp).

H(x) = D2
xx′f(x) =


D2
x1x1f(x) D2

x2x1f(x) . . . D2
xKx1f(x)

D2
x1x2f(x) D2

x2x2f(x) . . . D2
xKx2f(x)

... ... . . . ...
D2
x1xK

f(x) D2
x2xK

f(x) . . . D2
xKxK

f(x)

 .

The multivariable extension of the necessary first order condition (FOC) for x∗ to be a
minimum or maximum is that the gradient Dxf(x∗) = 0. If x∗ meets the FOC then we
consider the second order sufficient condition. For multiple variables we say that x∗ is a
local minimum (maximum) if H(x∗) is symmetric positive (negative) definite. These locals
become global if f is globally convex (concave). We can check H(x∗) using a few of our tools.
Notably, we can check the eigenvalues: H(x∗) is symmetric positive (negative) definite if its
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eigenvalues are all strictly positive (negative).

2.9 Probability theory with vectors

We briefly alluded to probability theory with multiple variables when we described joint
distributions and relations among variables. Notably, we described the covariance between
variables, but now we can kick it up just a little bit. Let X = (X1, . . . , XK) be a vector of
random variables we can define the expectation and variance of X as

E[X] = (E[X1], . . . ,E[XK ]),

and

Var(X) = E[(X − µ)(X − µ)′] =


Var(X1) Cov(X1, X2) . . . Cov(X1, XK)

Cov(X2, X1) Var(X2) . . . Cov(X2, XK)
... ... . . . ...

Cov(XK , X1) Cov(XK , X2) . . . Var(XK)


The variance matrix or variance-covariance matrix is a symmetric, positive semi definite
matrix. To see this note that for y 6= 0 we can show

y′Var(X)y = y′ E[(X − E[X])(X − E[X])′]y

= E[y′(X − E[X])(X − E[X])′y

Let Z = (X − E[X])′y

= E[Z ′Z]

Where Z ′Z will be positive semi definite by the same logic as LL′ above. It will be positive
definite if X has full rank.

Additional things to note with vector of random variables X, a matrix of constants A, and
vector of constants b:

1. E[AX + b] = AE[X] +B

2. Var(AX + b) = AVar(X)A′

These are the generalizations from the univariable case.
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Finally, for a multi-variable transformation Y = g(X) we have

fY (y) = fX(g−1(y))/| det(J(g(X)))|,

which looks similiar to what we saw before, but with the addition of the determinant, and
the use of the Jacobian for the first derivative. Let’s try an example.

Consider a multivariate version extension of the standard normal distribution as the joint
distribution of K independent standard normal random variables:

fX(x) = 1√
2π
e
−x2

1
2

1√
2π
e
−x2

2
2 . . .

1√
2π
e
−x2

K
2 = 1√

(2π)K
e
x′x

2 .

Here we can see that E[X] = (0, 0, . . . , 0) and Var(X) = IK . Imagine a matrix Ω1/2 such
that Ω1/2

(
Ω1/2

)′
= Ω, where Ω is positive definite and symmetric. Now let’s consider the

transformation Y = Ω1/2X + µ. The expectation of Y is straight forward

E[Y ] = Ω1/2 E[X] + µ = µ.

The variance is also easy

Var[Y ] = Ω1/2 Var(X)(Ω1/2)′ = Ω.

Now we want to find the pdf of Y . We can build the Jacobian easily enough

Dxkg(X)` = [Ω1/2]`,k

making the full Jacobian

J = Ω1/2
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Also we can find X = g−1(Y ) = (Ω1/2)−1(Y − µ). Now we can apply the change formula

fY (y) = fX(x)/ det(Ω1/2)

= 1√
(2π)K

e
−x′x

2
(
det(Ω1/2)

)−1

= 1√
(2π)K

e
−1
2 ((Ω1/2)−1(y−µ))′(Ω1/2)−1(y−µ)

(
det(Ω1/2)

)−1

= 1√
(2π)K

e
−1
2 ((y−µ)′((Ω1/2)−1)′(Ω1/2)−1(y−µ)

(
det(Ω1/2)

)−1

= 1√
(2π)K

e
−1
2 (y−µ)′((Ω1/2)(Ω1/2)′)−1(y−µ)

(
det(Ω1/2)

)−1

= 1√
(2π)K

e
−1
2 (y−µ)′Ω−1(y−µ)

(
det(Ω1/2)

)−1

From property 1 of determinants (above) we note that

det(Ω) = det(Ω1/2Ω1/2) = det(Ω1/2)2√
det(Ω) = det(Ω1/2)

Plugging that in

= 1√
(2π)K

e
−1
2 (y−µ)′Ω−1(y−µ)

(√
det(Ω)

)−1

= 1√
(2π)K det(Ω)

e
−1
2 (y−µ)′Ω−1(y−µ)

This is the full multivariate normal distribution.

Multivariate distributions are not always the easiest to deal with and when we want to test
hypotheses about the parameters of multiple normal random variables, it is often easier to
combine them. Let X ∼ N(µ,Ω) with a symmetric and positive definite Ω. By the Cholesky
decomposition we can write a transformed variables

(
Ω1/2

)−1
(X − µ) This transformed
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variable has an expected value of 0 and variance

Var
((

Ω1/2
)−1

(X − µ)
)

=
(
Ω1/2

)−1
Ω
((

Ω1/2
)−1

)′
=
(
Ω1/2

)−1
Ω1/2

(
Ω1/2

)′ ((
Ω1/2

)−1
)′

= I

This tells us that
(
Ω1/2

)−1
(X − µ) ∼ N(0, I) and thus (X − µ)′Ω−1(X − µ) ∼ χ2

K . This will
help us out going forward.
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3 Multiple regression in finite samples

With all of these tools in hand we are now ready to consider and analyze the multiple
regression model. In multiple regression we are looking to predict/explain/describe values
of an outcome variable yi using K − 1 independent variables. Specifically we will write our
regression equation as

yi = β0 + β1xi1 + . . . βmxim + εi.

Here, β = (β0, . . . , βm) are the K = m + 1 true population values of interest and xi =
(1, xi1, . . . xim) is a vector of length K = m+ 1 characteristics. We can rewrite the model in
vector form

yi
1×1

= β
K×1

′ xi
K×1

+ εi
1×1
,

where β and xi are both K × 1 column vectors. Or we can use matrix form

y
N×1

= X
N×K

β
K×1

+ ε
N×1

.

The OLS estimator is unchanged:

β̂ = argmin
β

N∑
i=1

(yi − β′xi)2

or

= argmin
β

(y −Xβ)′(y −Xβ)

We can take the FOC of the vector representation

Dβ

N∑
i=1

(yi − β′xi)2 =
N∑
i=1
−2(yi − β′xi)xi

0 =
N∑
i=1
−2(yi − β′xi)xi
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We can rewrite this to be

= 1
N

N∑
i=1

(yi − β′xi)xi

= 1
N

N∑
i=1

(yi − β′xi)xi

= 1
N

N∑
i=1

yixi −
1
N

N∑
i=1

β′xixi

1
N

N∑
i=1

xiyi = 1
N

N∑
i=1

xiβ
′xi

1
N

N∑
i=1

xiyi = 1
N

N∑
i=1

xix
′
iβ

β̂ =
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiyi.

Or in matrix notation
β̂ = (X ′X)−1X ′y.

We want to make sure that this value is a minimum of the objective function so we check the
second order condition.

D2
ββ′

N∑
i=1

(yi − β′xi)2 =
N∑
i=1

2xix′i.

We want to show that this is positive definite. First, note that for any nonzero vector z of
length K we know that z′xix′iz = (z′xi)2 ≥ 0. As such it follows that z′

(
2∑N

i=1 xix
′
i

)
z ≥ 0,

so the Hessian is semi-positive definite and that its eigenvalues are weakly positive. Let’s
suppose that ∑N

i=1 xix
′
i has full rank (i.e., X ′X is invertable), then we know that none of

the eigenvalues are zero (and are thus strictly positive), and this tells us that the Hessian
is positive definite. Thus the OLS estimates are indeed a local minimum of the objective
function. Since the objective function is quadratic, there is only one minimum and the OLS
estimates are the global minimum.

3.1 Finite sample properties of the OLS estimator with (possibly)
stochastic regressors

We are now going to assess the OLS estimator under a new set of assumptions.
Overall, these will look very similar to what we’ve seen before. The main difference is that
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we will be allowing X to realizations from a random variable.
Assumption B1 The data generating process (the population model) is linear in the param-
eters:

yi = β′xi + εi.

Assumption B1 also allow us to rewrite β̂ as

β̂ =
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiyi

=
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xi(β′xi + εi)

=
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xi(x′iβ + εi)

=
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xix
′
iβ + xiεi)

=
(

1
N

N∑
i=1

xix
′
i

)−1 (( 1
N

N∑
i=1

xix
′
i

)
β +

(
1
N

N∑
i=1

xiεi

))

=
(

1
N

N∑
i=1

xix
′
i

)−1 ( 1
N

N∑
i=1

xix
′
i

)
β +

(
1
N

N∑
i=1

xix
′
i

)−1 ( 1
N

N∑
i=1

xiεi

)

= β +
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiεi.

or
β̂ = β + (X ′X)−1X ′ε.

Let’s add a little more structure to see what this does for us.
Assumption B2 The error term is mean 0, conditional on xi: E[εi|xi] = 0

Here we note that this zero-conditional mean assumption requires that there be strict
independence (no linear or non-linear relationship) between xi and εi. This assumption also
implies that E[εi] = 0 (unconditional mean zero) and that E[xiεi] = 0 (if this value exists).
This assumption is untestable, but it is the linchpin of all regression analysis. If it holds we
say that xi is exogenous, otherwise we have an endogeneity problem (much more on this to
come).
Assumption B3 The pairs (xi, εi) are independent and identically distributed.

These three assumptions are going to buy us a lot. Now we can describe the expected value

109



of the OLS estimates Let’s check it out

E[β̂] = Ex[E[β̂|X]]

= Ex

E
β +

(
1
N

n∑
i=1

xix
′
i

)−1 ( 1
N

n∑
i=1

xiεi

)
|X


= Ex

β +
(

1
N

n∑
i=1

xix
′
i

)−1 ( 1
N

n∑
i=1

xi E [εi|X]
)

= Ex

β +
(

1
N

n∑
i=1

xix
′
i

)−1 ( 1
N

n∑
i=1

xi E [εi|xi]
)

= Ex [β]

= β.

By applying the law of iterated expectations we find that E[β̂] = β.
Property B1 Our first result for multiple regression is that the under Assumptions B1-B3
the OLS estimates of β are unbiased if (X ′X)−1 exists.

That last bit requires that (X ′X)−1 to exists. Before we go much further, we should put
some structure on the problem to ensure that it will.
Assumption B4 E[xix′i] <∞ and E[xiεi] <∞

Assumptions B2 and B4 combine to tell us more about the relationship of xiεi, specifically,
we can now say that E[εixi] = Cov(xi, εi) = 0.
Assumption B5 The E[xix′i] is symmetric and positive definite.

These assumption puts some conditions on the distributions that generate the data xi and
the error term εi, that allow us to say that (X ′X)−1 will likely exist. In our finite sample,
we should note that rank(X ′X) = rank(XX ′) = rank(X) = rank(X ′). For ∑N

i=1 xix
′
i to have

full rank is the same as saying that X ′X has rank K or that X has rank K. The easiest way
to think about this is to say that no variable in X can be a linear combination of one or more
other variables (including the column of 1s). While we are looking at finite sample properties
it will be useful to add

Assumption B5.A The matrix ∑N
i=1 xix

′
i has full rank.

Assumptions B4 and B5 imply the OLS estimate there is a unique and finite solution to the
minimization problem unless we’re really unlucky in how the X’s are realized. Assumption
B5.A tells us that we weren’t unlucky on that front.
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Property B2 Under Assumptions B1-B5.A, the OLS estimator exists for any N .

The next two assumptions go together:
Assumption B6 The variance of xiεi is finite Var(xiεi) <∞

Assumption B7 The error terms are homoskedastic E[ε2
i |xi] = σ2

ε

Let ε̂i be the estimated residual ε̂i = yi − β̂′xi and let

σ̂2
ε = 1

N −K

N∑
i=1

ε̂2
i

be our estimate of σ2. One thing to note here is that:

N∑
i=1

ε̂2
i = ε̂′ε̂

= (y −Xβ̂)′(y −Xβ̂)

= (Xβ + ε−Xβ̂)′(Xβ + ε−Xβ̂)

= (ε−X(β̂ − β))′(ε−X(β̂ − β))

= (ε−X(X ′X)−1X ′ε)′(ε−X(X ′X)−1X ′ε)

= (Mε)′(Mε)

= ε′M ′Mε,

where M = I −X(X ′X)−1X ′. It turns out that M is an interesting and recurring matrix; M
is called the residual maker as My = ε̂ or the annihilator matrix (because it annihilates
all the X out of y). A few facts about it: M is symmetric

M ′ = I − (X(X ′X)−1X ′)′ = I −X(X ′X)−1X ′ = M,

and
MM = (I −X(X ′X)−1X ′)(I −X(X ′X)−1X ′)

= I − 2X(X ′X)−1X ′ +X(X ′X)−1X ′X(X ′X)−1X ′

= I − 2X(X ′X)−1X ′ +XI(X ′X)−1X ′

= I −X(X ′X)−1X ′

= M

M is idempotent.
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Because M is idempotent we have ε̂′ε̂ = ε′MMε = ε′Mε. This allows us to have some fun

E[ε̂′ε̂|X] = E[ε′Mε
1×1
|X]

= E[tr(ε′Mε)|X] Let A = ε′, B = Mε. and recall tr(AB) = tr(BA)

= E[tr(Mεε′)|X]

= tr(E[Mεε′|X])

= tr(M E[εε′|X])

= tr(Mσ2I)

= σ2tr(M),

where

tr(M) = tr(IN)− tr(X(X ′X)−1X ′)

= tr(IN)− tr(X ′X(X ′X)−1)

= tr(IN)− tr(Ik)

= N −K,

as such

E[ε̂′ε̂] = Ex[E[ε̂′ε̂|X]]

= Ex[σ2(N −K)] = σ2(N −K)

Now, since we set

σ̂2
ε = 1

N −K

N∑
i=1

ε̂2
i

we now have
E[σ̂2

ε ] = 1
N −K

E[ε̂′ε̂] = σ2
ε .

We now have another property of OLS.

Property B3 Under Assumptions B1-B7, σ̂2
ε is a unbiased estimate of σ2

ε .

Further, recall that
β̂ = β + (X ′X)−1X ′ε.
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We can now find the variance given X

Var(β̂|X) = Var((X ′X)−1X ′ε|X)

= (X ′X)1X ′Var(ε|X)X(X ′X)−1

= (X ′X)1X ′ E [(ε− E[ε|X])(ε− E[ε|X]|X)′]X(X ′X)−1

= (X ′X)1X ′ E[εε′|X]X(X ′X)−1

= (X ′X)1X ′[σ2
εIN ]X(X ′X)−1

= σ2
ε(X ′X)−1X ′X(X ′X)−1

= σ2
ε(X ′X)−1.

Our next property of OLS describes the variance of the OLS estimates
Property B4 Under Assumptions B1-B7 Var(β̂|X) = σ2

ε(X ′X)−1.

One final assumption completes our baseline assumptions
Assumption B8 εi is normally distributed for all i.

Normal errors buy as a few things going forward. First though it gets us another property:
Property B5 Under Assumptions B1-B8, β̂ is normally distributed, conditional on X (due
to linearity),

β̂|X ∼ N(β, σ2
ε(X ′X)−1).

From here we can use the assumptions to consider the distributions of our estimates when σ2
ε

is unknown and has to be estimated, let’s start with σ̂2
ε . Start with

(N −K)σ̂2
ε

σ2
ε

=
(N −K) 1

N−K
∑N
i=1 ε̂

2
i

σ2
ε

= ε̂′ε̂

σ2
ε

= ε′Mε

σ2
ε

= ε

σε

′
M

ε

σε
,

where the eagle-eyed observer will note

ε

σε
∼ N(0, 1).

Applying Theorem 11 from above we see that this transformation of σ̂2
ε will follow a χ2

rank(M)
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distribution. What is the rank of M? Three facts will help us here, recall:

1. Rank of M is equal to the number of non-zero eigenvalue rank(M) = ∑N
i=1 I(λi 6= 0);

2. The tr(M) = ∑N
i=1 λi where λi is the ith eigenvalue of M ;

3. Because M is idemopotent, λi ∈ {0, 1} for all i.

Putting these together we can note that for an idemopotent matrix rank(M) = tr(M). As
such we can say that our next property of OLS is:
Property B6 Under Assumptions B1-B8,

(N −K)σ̂2
ε

σ2
ε

∣∣∣∣∣∣X ∼ χ2
N−K ,

but this conditional distribution does not depend on X and as such the marginal distribution
is

(N −K)σ̂2
ε

σ2
ε

∼ χ2
N−K .

This property means that we can test null hypotheses that σ2
ε = s by constructing the test

statistic (N−K)σ̂2
ε

s
.

We need to prove one additional result before proceeding.
Theorem 12 Let z ∼ N(0, I) be a vector of standard normal random variables. Then Az
and Bz are independent if AB′ = 0.

Proof. Note that (Az,Bz) = (A,B)z is a linear function of normal random variables and
thus Az and Bz are jointly normal. As such, in order to show independence we need their
covariance to be 0.

Cov(Az,Bz) = E[Az(Bz)′]− E[Az] E[Bz]′ = AE[zz′]B′ = AIB′ = AB′ = 0.

Now we are close to describing the distribution of β̂ when we don’t know σ2
ε . Start with the

fact that
β̂ − β
σε

= (X ′X)−1X ′
ε

σε
,

and
(N −K)σ̂2

ε

σ2
ε

= (M ε

σε
)′M ε

σε
.
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Now, let A = (X ′X)−1X ′, let B = M , and note that z = ε
σε
∼ N(0, I), then

AB′ = (X ′X)−1X ′(I −X(X ′X)−1X ′) = (X ′X)−1X ′ − (X ′X)−1X ′X(X ′X)−1X ′ = 0.

Using Theorem 12 we can find the next property of OLS.
Property B7 Under Assumptions B1-B8 β̂−β

σε
and (N−K)σ̂2

ε

σ2
ε

are statistically independent.

This property moves us closer to forming the distribution of β̂ with unknown σ2
ε . Recall from

math camp that we said that if U ∼ N(0, 1) and V ∼ χ2
v and U and V are independent, then

U/
√
V/v ∼ tv. Now note that β̂k−βk

σε
√

[(X′X)−1]kk
∼ N(0, 1), for k = 1, . . . , K. Additionally, note

that this is unconditional X. Why? Because the standard normal doesn’t depend on X; it
just doesn’t enter! This is wicked good for us, because if we have conditional distributions
that don’t involve the conditioned value, then the conditional and the marginal are the same!
We already showed that (N−K)σ̂2

ε

σ2
ε
∼ χ2

N−K . So

β̂k−βk
σε
√

[(X′X)−1]kk√√√√ (N−K)σ̂2
ε

σ2
ε

/
N −K

= β̂k − βk
σ̂ε
√

[(X ′X)−1]kk
∼ tN−K .

We now have enough for hypothesis testing in finite samples:
Property B8 Under Assumptions B1-B8, β̂k−βk

σ̂ε
√

[(X′X)−1]kk
∼ tN−K.

This result opens the door to hypothesis testing with respect to the true but unknown β
parameters. Individual tests of the from

H0 : βk = b,

can now be considered against one or two sided alternatives. Under the null we have

β̂k − b
σ̂ε
√

[(X ′X)−1]kk
∼ tN−K .

And importantly, these various tests are not conditional distributions. Commonly these tests
are two sided tests of the hypothesis that βk = 0 for each k = 1, . . . , K. These are the tests
that get reported by default by lm or any other basic regression function. While these tests
are important and are the crux of most research questions, they are only the beginning of an
entire world of hypothesis testing.
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3.1.1 Linear hypothesis tests

Fancier hypothesis tests move us beyond asking whether or not βk = b. Instead our research
question may lead us to ask whether βk + β` = b or if βk = β` or if βk = 0 & β` = 1.
Hypotheses like these can be formed by common research questions and we’ll encounter some
of these in practice going forward.

What’s notable about hypotheses tests like these as that they can all be written as a set of
linear equations

Aβ = b.

As an example let K = 3 and consider the hypothesis that β1 = β2. Here A = [0, 1,−1] and
b = 0, then

Aβ = b

0× β0 + 1× β1 − 1× β2 = 0

β1 − β2 = 0

Under a different null where β0 = 0 and β1 = 1, we have A =
1 0 0

0 1 0

 and b =
0

1

. Let J
be the number of rows in A and b, this number matches the number of restrictions (equal
signs) in the null hypothesis.

To find a test statistic for these tests we will exploit the following fact from math camp
Fact 2 Let U ∼ χ2

u and V ∼ χ2
v and U and V be statistically independent. Then U/u

V/v
∼

F (u, v).

The F distribution here is found as the ratio of two scaled χ2 random variables. It is a
common distribution in linear models, it has two parameters u and v that both reflect degrees
of freedom.

For our hypothesis tests we have a null

H0 : Aβ = b

and alternative
HA : Aβ 6= b.

Under the null hypothesis we write

Aβ̂ − b = Aβ̂ − Aβ = A(β̂ − β).
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Since we know that β̂|X ∼ N(β, σ2
ε(X ′X)−1), we can say that the

A(β̂ − β)|X ∼ N(0, σ2
εA(X ′X)−1A′),

or [
σ2
εA(X ′X)−1A′

]−1/2
A(β̂ − β) ∼ N(0, IJ),

where the notation −1/2 here means the inverse of the Cholesky decomposition. To make
this easier to deal with we we will “square” it like we described earlier

(β̂ − β)′A′
[
σ2
εA(X ′X)−1A′

]−1
A(β̂ − β) ∼ χ2

J .

This would be great. . . except for that σ2
ε in there. Note that since this expression is a function

of β̂ and (N−K)σ̂2
ε

σ2
ε

is a function of σ̂2
ε then these two quantities are independent (see Property

B7, above). We can apply Fact 2 to show that

F =
(β̂ − β)′A′ [σ2

εA(X ′X)−1A′]−1
A(β̂ − β)

/
J

(N−K)σ̂2
ε

σ2
ε

/
N −K

= (β̂ − β)′A′ [A(X ′X)−1A′]−1
A(β̂ − β)

Jσ̂2
ε

= (Aβ̂ − Aβ)′ [A(X ′X)−1A′]−1 (Aβ̂ − Aβ)
Jσ̂2

ε

∼ FJ,N−K .

This leads to:
Property B9 Under Assumptions B1-B8, null hypotheses of the form Aβ = b can be tested
with the F statistic

(Aβ̂ − b)′ [A(X ′X)−1A′]−1 (Aβ̂ − b)
Jσ̂2

ε

∼ FJ,N−K ,

which is purely a function of data, estimates, and hypothesized values.

3.1.2 Application

Before proceeding, let’s consider how to interpret the parameters β = (β0, β1, β2). Things
changa little bit from simple regression land, but not a lot. Let x−1,i be the xi excluding the
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column of 1s. For β0 we are still looking at

E[y|x−1,i = 0] = E[β′xi + ε|x−1,i = 0] = β0.

So β̂0 is the estimated expected value of yi when all the independent variables are set to 0.
How interesting that is depends on whether X−1 = 0 is an interesting (or plausible) profile.
For the remaining βs we will be interested in the marginal effect given by the derivative of
yi with respect to each element xi.

Dxijyi = Dxij (β′xi + εi) = βj.

Put another way:

On average, a 1 [UNIT OF Xj] increase in Xj is associated with a β̂j [UNIT OF
y] increase in y, holding all the other independent variables constant.

What does this last part mean? It means that we consider the change in y as a function of
Xj, after removing any changes in y due to the other variables. This follows from a result
known as the Frisch-Waugh-Lovell theorem. Put simply, in a model where we split the
regressors into two vectors xi and zi and

yi = β′1xi + β′2zi + εi,

you can estimate β2 either by multiple regression or by fitting the regression of

MXy = MXZβ2 +MXε.

Here MX = I −X(X ′X)−1X ′ is the annihilator matrix that removes all the variance in y
explained by X.

Let’s suppose our research questions are: Does candidate spending effect vote share and do
challenger and incumbent spending have the same effect in campaigns? We could imagine a
model

yi = β0 + niβ1 + ciβ2 + εi

where yi is the incumbent’s share of the vote, ni in incumbent spending, and ci is challenger
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spending. Here xi = (1, ni, ci), and our hypothesis of interest are

H10 : β1 = 0

H1A : β1 6= 0

H20 : β2 = 0

H2A : β2 6= 0

H30 : β1 = −β2

H3A : β2 6= −β2

We have some data on senate races, let’s see what happens

library(readstata13)
library(car) #Companion to Applied Regression

senate.data <- read.dta13("Rcode/datasets/senate_expanded.dta")
head(senate.data)

## year st_abr st_name st_code st_south st_pop st_uemp inc_icpsr inc_pos
## 1 1980 AK Alaska 81 0 401851 9.4 12105 -0.285
## 2 1980 AL Alabama 41 1 3893888 8.4 14711 -0.226
## 3 1980 AR Arkansas 42 1 2286435 7.5 14300 -0.313
## 4 1980 AZ Arizona 61 0 2718215 6.7 3658 0.608
## 5 1980 CA California 71 0 23667902 6.9 12103 -0.409
## 6 1980 CO Colorado 62 0 2889964 5.9 14305 -0.409
## inc_spend ch_qual ch_spend ch_wealthy inc_2p_share st_id inc_tenure inc_rep
## 1 NA NA NA NA NA NA 12 0
## 2 NA NA NA NA NA 26.2 2 0
## 3 220861 0 119196 0 0.5911147 11.5 6 0
## 4 949992 0 2085242 1 0.5054943 23.4 12 1
## 5 2823607 0 1152272 0 0.6033472 7.4 12 0
## 6 1142304 3 1085205 0 0.5082657 15.8 6 0

#Let's use spending per capita
senate.data$inc_spend_capita <- senate.data$inc_spend /senate.data$st_pop
senate.data$ch_spend_capita <- senate.data$ch_spend / senate.data$st_pop

model.sen <- lm(inc_2p_share~inc_spend_capita+ch_spend_capita, data=senate.data)
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summary(model.sen)

##
## Call:
## lm(formula = inc_2p_share ~ inc_spend_capita + ch_spend_capita,
## data = senate.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21801 -0.05961 -0.00514 0.04432 0.37040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.631851 0.007553 83.660 < 2e-16 ***
## inc_spend_capita 0.022629 0.006261 3.615 0.000354 ***
## ch_spend_capita -0.084801 0.008681 -9.769 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08614 on 292 degrees of freedom
## (77 observations deleted due to missingness)
## Multiple R-squared: 0.2709, Adjusted R-squared: 0.266
## F-statistic: 54.26 on 2 and 292 DF, p-value: < 2.2e-16

#time out interpret the coefficients
#time out what hypothesis tests are included here?

#Let's verify these
dat <- na.omit(subset(senate.data,

select=c("inc_2p_share",
"inc_spend_capita",
"ch_spend_capita")))

X <- with(dat, cbind(1,inc_spend_capita, ch_spend_capita))
y <- dat$inc_2p_share
b.hat <- solve(t(X) %*% X) %*% t(X) %*% y
cbind(b.hat, model.sen$coefficients)
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## [,1] [,2]
## 0.63185127 0.63185127
## inc_spend_capita 0.02262911 0.02262911
## ch_spend_capita -0.08480088 -0.08480088

# By FWL
N <- nrow(X)
K <- ncol(X)
Mch <- diag(N) - X[,3] %*% solve(t(X[,3]) %*% X[,3]) %*% t(X[,3])
ystar <- Mch %*% y #annihilate ch spending out of y
Xstar <- Mch %*% X[,1:2]#annihilate ch spending out of inc spending and 1
solve(t(Xstar) %*% Xstar) %*% t(Xstar) %*% ystar

## [,1]
## 0.63185127
## inc_spend_capita 0.02262911

Minc<- diag(N) - X[,2] %*% solve(t(X[,2]) %*% X[,2]) %*% t(X[,2])
ystar <- Minc %*% y #annihilate inc spending out of y
Xstar <- Minc %*% X[,c(1,3)]#annihilate inc spending out of ch spending and 1
solve(t(Xstar) %*% Xstar) %*% t(Xstar) %*% ystar

## [,1]
## 0.63185127
## ch_spend_capita -0.08480088

#Estimate the variance
sigma2.hat <- sum( (y-X%*%b.hat)^2) /(N-K)
c(sigma2.hat, summary(model.sen)$sigma^2)

## [1] 0.007419449 0.007419449

V <- sigma2.hat * solve(t(X) %*% X)
V

## inc_spend_capita ch_spend_capita
## 5.704168e-05 -2.581596e-05 -2.113666e-06
## inc_spend_capita -2.581596e-05 3.919555e-05 -3.538724e-05
## ch_spend_capita -2.113666e-06 -3.538724e-05 7.535747e-05
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Var.bhat <- diag(V)
se.bhat <- sqrt(Var.bhat)
cbind(se.bhat, sqrt(diag(vcov(model.sen))))

## se.bhat
## 0.007552594 0.007552594
## inc_spend_capita 0.006260635 0.006260635
## ch_spend_capita 0.008680868 0.008680868

#hypotheses 1:
t1 <- (b.hat[2]-0)/se.bhat[2]
curve(dt(x, df=(N-K)), from=-5, to=5,

xlab=expression((hat(beta)[1]-beta[1])/se(beta)[1]),
ylab="Density if null hypothesis is true")

abline(h=0)
abline(v=t1, col="blue", lty="dashed")
abline(v=-t1, col="blue", lty="dashed")
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pt(abs(t1),df=(N-K), lower.tail=FALSE) * 2

## inc_spend_capita
## 0.0003542927
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#hypothesis 2: (see summary output)

#hypothesis 3:
linearHypothesis(model.sen,

c("inc_spend_capita=-ch_spend_capita"))

## Linear hypothesis test
##
## Hypothesis:
## inc_spend_capita + ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ inc_spend_capita + ch_spend_capita
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 293 2.8216
## 2 292 2.1665 1 0.65508 88.293 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A <- matrix(c(0,1,1), nrow=1)
b <- 0
bread <- A %*% model.sen$coef -b #We want to know is this close enough to 0?
meat <- solve(A %*% solve(t(X) %*% X) %*% t(A) )
F.stat <- (t(bread) %*% meat %*% bread)/(1 * sigma2.hat)
F.stat

## [,1]
## [1,] 88.29276

curve(df(x, df1=nrow(A), df2=(N-K)), from=-0.000, to=100,
xlab=expression(F-"statistic"),
ylab="Density if null hypothesis is true")

abline(h=0); abline(v=0)
abline(v=F.stat, col="blue", lty="dashed")
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lower.tail = F)

## [,1]
## [1,] 1.697763e-18

#What have we learned

3.2 Prediction

Now that we have OLS estimates, we might be interested in predicting values of the outcome
for a new or counterfactual observation, let’s call it x∗. Predictions will contain two parts:

1. The predicted value y∗

2. The uncertainty Var(y∗|X = x∗)

Note that we can draw a distinction between predictions (what value of y∗ do we predict
for a new and previously unobserved x∗) and expectations (what is the expected value of y∗

when X takes on the value x∗). The second of these is a question about E[y|X = x∗]. The
estimate is identical, but the variance is less because the Var(E[y|X = x∗]) does not need
to include contain the population variance σ2

ε . The main distinction is that a prediction is
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about what is a plausible new value of y for some newly observed x∗, while an expectation is
what does the model say about y when X = x∗? It should be obvious that the only technical
difference here is that a prediction will have larger confidence intervals, but these are in fact
two different substantive questions. Choose between them for substantive reasons.

So, how do we make these predictions? Start with the population model

y∗ = β′x∗ + ε∗,

replacing the population values with estimates we get

ŷ∗ = β̂′x∗ + ε∗ = β̂′x∗.

We don’t know ε∗ so we replaced it with it’s average value (zero) to form the prediction.
However, we will want to account for that in the uncertainty of our prediction.

Let’s consider the finite properties:

E[ŷ∗ − y∗|x∗] = E[β̂′x∗ − β′x∗ − ε∗|x∗] = 0 = E[ŷ∗ − y∗]

Var[ŷ∗|x∗] = Var(β̂′x∗ + ε∗|x∗)

= Var(β̂′x∗|x∗) + Var(ε∗|x∗)− 2 Cov(β̂′x∗, ε∗|x∗)

= x∗′Var(β̂|x∗)x∗ + Var(ε∗|x∗)− 2x∗Cov(β̂, ε∗|x∗)

= x∗′Var(β̂|x∗)x∗ + Var(ε∗|x∗).

Note that we include ε∗i in the variance because we want our prediction to reflect the
uncertainty of generating a “new” observation.

If we make use of independence, homoskedasticity, and normality, we get a nice statement for
the variance

Var[ŷ∗|x∗] = σ2
ε(1 + x∗′(X ′X)−1),

and the hypothesis test:
β̂′x∗ − y∗

σε
√

1 + x∗′(X ′X)−1x∗
∼ N(0, 1).

Of course we don’t know σε. So we end up have to use σ̂ε and we find ourselves back with
the t distribution as usual.
Property B10 Under assumptions B1-B8, we can get hypotheses about predicted values with
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the test statistic
β̂′x∗ − y∗

σ̂ε
√

1 + x∗′(X ′X)−1x∗
∼ tN−K ,

and form confidence intervals for predictions based on distribution

CIα(ŷ∗) = β̂′x∗ ± tN−K,α × σ̂ε
√

1 + x∗′(X ′X)−1x∗.

In comparison, if we were only interested in the expected value of y at some point x∗ (not a
prediction) then we get

E[ŷ∗|X = x∗] = β̂′x∗

Var (E[ŷ∗|X = x∗]) = x∗′Var(β̂|x∗)x∗

CIα(E[ŷ∗|x∗]) = β̂′x∗ ± tN−K,α ×
√
x∗′V̂ar(β̂|X)x∗

One last note on predictions before moving on. We will consider the one variable case to
explore some of the mechanics of prediction. Let X = [1, X1] and let x∗ = (1, b)′. We can
build the variance of β̂ based on

(X ′X)−1 =
 N

∑N
i=1 xi1∑N

i=1 xi1
∑N
i=1 x

2
i1

−1

= 1
N

 1 x1

x1 x2
1

−1

= 1
N(x2

1 − x1
2)

 x2
1 −x1

−x1 1


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Now, consider

x∗′(X ′X)−1x∗ = (1, b)
 1
N(x2

1 − x1
2)

 x2
1 −x1

−x1 1

 (1, b)′

= x2
1 − 2bx1 + b2

N(x2
1 − x1

2)

= x2
1 − x1

2 + x1
2 − 2bx1 + b2

N(x2
1 − x1

2)

= x2
1 − x1

2

N(x2
1 − x1

2)
+ x1

2 − 2bx1 + b2

N(x2
1 − x1

2)

= 1
N

+ (b− x1)2

N(x2
1 − x1

2)

All of that is to say that we get a prediction interval of

β̂0 + bβ̂1 ± tN−K,ασ̂ε

√√√√1 + 1
N

+ (b− x1)2

N(x2
1 − x1

2)
.

When is this going to be wider/narrower? Narrowest at b = x1 and wider the further you get.
Predictions are most precise when looking at an average case. As you move further away
from the mean these intervals will get larger.

3.2.1 Application

Let’s try another quick application with our presidential vote data. Here’s a relevant example,
let’s try to predict presidential vote share using

• incumbent president’s approval rating
• growth (Projection of annual growth using the first three quarters of the election year,

Ray Fair’s data)
• inflation (Absolute increase in the GDP deflator over first 15 quarters in office, Ray

Fair’s data)

library(readstata13)
presdata <- read.dta13("Rcode/datasets/presvote.dta")
presdata$IncShare[33:34] <- c(0.4631,0.5196 )
model2 <- lm(IncShare~App+Growth+Inflation, data=presdata)
summary(model2)
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##
## Call:
## lm(formula = IncShare ~ App + Growth + Inflation, data = presdata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.047855 -0.018897 -0.002957 0.022635 0.059368
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3615128 0.0412504 8.764 2.75e-07 ***
## App 0.0024016 0.0006348 3.783 0.00180 **
## Growth 0.0122148 0.0034032 3.589 0.00268 **
## Inflation 0.0009765 0.0038339 0.255 0.80241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03389 on 15 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.6429, Adjusted R-squared: 0.5715
## F-statistic: 9.001 on 3 and 15 DF, p-value: 0.001187

We can interpret these results and hypotheses tests. Go ahead and wow me. What we’re
most interested in here is forming a prediction for the vote share in 2016 and 2020. Caution
on 2020: Growth is way below anything seen in the data. This means we’re forecasting in
uncharted territory, which is dangerous and prone to error.

## Make a prediction for 2016, 2020
new.data <- data.frame(App=c(54,46),

Growth=c(0.97,-5.07), #Ray Fair 10/29/2020 data
Inflation=c(1.42,1.8)) #Ray Fair 10/29/2020 data

rownames(new.data) <- c("2016", "2020")
fitted <- predict(model2, newdata = new.data, interval ="prediction")
## NOTE
## interval="confidence" gives you the interval for \hat{E[y|X=x.star]}
## interval="prediction" gives you the interval for \hat{y}|X=x.star
fitted

128



## fit lwr upr
## 2016 0.5044332 0.4280662 0.5808001
## 2020 0.4118142 0.3161864 0.5074420

#true 2016
(65853514)/(65853514+62984828)

## [1] 0.5111329

#true 2020
(74216154)/(74216154+81268924)

## [1] 0.4773201

## calculate "by hand"
X <- na.omit(with(presdata, cbind(1, App, Growth, Inflation)))
x.star <- as.matrix(cbind(1,new.data))
sigma.hat2 <- summary(model2)$sigma^2
y.hat <- x.star %*% model2$coef
var.yhat <- sigma.hat2*(diag(2) + x.star %*% solve(t(X) %*% X) %*% t(x.star))
se.yhat <- sqrt(diag(var.yhat))
t.crit <- qt(.975, df=nrow(X)-ncol(X))
predictions.byhand <- cbind(y.hat,

y.hat - t.crit*se.yhat,
y.hat + t.crit*se.yhat)

colnames(predictions.byhand) <- c("Fitted", "CI.Low", "CI.high")
rownames(predictions.byhand) <- c("2016", "2020")
predictions.byhand

## Fitted CI.Low CI.high
## 2016 0.5044332 0.4280662 0.5808001
## 2020 0.4118142 0.3161864 0.5074420

Which is what we wanted to show.

3.3 Best estimation

One criterion that we can use to justify OLS, or indeed select any estimator, is the idea
choosing the unbiased estimator with the least variance. How does OLS do on this scale? Let’s
also restrict ourselves to searching over linear estimators (we like linear estimators for their
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ease and interpretability). Consider an arbitrary unbiased linear estimator of β̂A = Cy + d.
For β̂A to be unbiased we need the expectation to be β, so

E[β̂A|X] = E[Cy + d|X]

= E[CXβ + ε|X] + d

= CXβ + C E[ε|X] + d

= CXβ + d = β,

which only works for CX = I and d = 0. Notice that OLS satisfies this condition.

Let’s check the variance of β̂A.

Var(Cy|X) = C Var(y|X)C ′

= C Var(Xβ + ε|X)C ′

= C Var(ε|X)C ′

= σ2
εCC

′

Define D = C − (X ′X)−1X ′, then we have DX = CX − (X ′X)−1X ′X = I − I = 0 and
C = D + (X ′X)−1X ′. Putting a specific form of does not make the proof any less general as
C as this can still be any linear unbiased estimator so long as DX = 0. Writing it this way
does help us understand the variance though.

σ2
εCC

′ = σ2
ε(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′

= σ2
ε(DD′ +DX(X ′X)−1 + (X ′X)−1(DX)′ + (X ′X)−1X ′X(X ′X)−1

= σ2
εDD

′ + σ2
ε(X ′X)−1.

Note that the second term is the variance of β̂ and we can show that σ2DD′ is a positive
semidefinite matrix. As such we find that

z′Var(Cy|X)z = z′
(
Var(β̂|X) + σ2DD′

)
z = z′Var(β̂|X)z + z′σ2DD′z ≥ z′Var(β̂|X)z.

So as a whole the variance-covariance will be weakly larger. As such we say that OLS has
the smallest variance amongst unbiased linear estimators, a condition called BLUE: the best
linear unbiased estimator. This is the next property of OLS
Property B11 Gauss-Markov theorem OLS is the minimum variance estimator among
all linear unbiased estimators under Assumptions B1-B7 (note we didn’t need Assumption B8
for this).
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4 Large sample properties of OLS

The above provides us with good insight into the OLS estimator and shows us many desirable
properties in finite samples However, homoskedastiscity and normal errors are still very
restrictive. But, without them we lose some of our finite sample properties. As such, we
probably want to know what we can and can’t do with out them. To figure this out we’ll
need to consider the large sample (asymptotic) properties of OLS. We will reintroduce our
assumptions as we go.

4.1 Asymptotic properties of the OLS estimator

Note that the OLS estimator remains

β̂ = (X ′X)−1X ′y

We will now reintroduce our assumptions.
Assumption B1 The population DGP is linear yi = β′xi + εi

Assumption B2 E[εi|xi] = 0

Assumption B3 The pairs of (xi, εi) are independent and identically distributed.

Recall that these three assumptions are all we need for OLS to be unbiased (if the OLS
estimator exists).

Before moving further, we will need to remind ourselves about a result from math camp: the
(weak) Law of Large Numbers.
Theorem 13 (Weak Law of Large Numbers) Let X1, . . . , XN be an iid sequence of
random variables, where each Xi has a finite absolute first moment E[Xi] = µ <∞. Then
1
N

∑N
i=1Xi

p→ E[Xi].

In order to apply this result we need two more assumptions
Assumption B4 E [xix′i] <∞ and E [xiεi] <∞.

Assumption B5 E[xix′i] is symmetric and positive definite

Finally, we will state three more useful results:
Theorem 14 Let g be a continuous function and let X and Y be random variables

• If X and Y are independent, then g(X) and g(Y ) are independent random variables
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• If X and Y are identically distributed, then g(X) and g(Y ) are identically distributed

Theorem 14 is a deceptively powerful result. We can now say that since we know xi and εi
are each iid, then g(xi) and g(εi) will retain these properties for continuous g.

The next two theorems are clutch for analyzing asymptotic properties.
Theorem 15 (Continuous mapping theorem) Consider a sequence of random variables
Xn = X1, . . . XN and a continuous function g

• If Xn
d→ X, then g(Xn) d→ g(X)

• If Xn
p→ X, then g(Xn) p→ g(X)

Theorem 16 (Slutsky’s Theorem) Let Xi and Yi be sequences of random variables.

1. If Xn
d→ X and Yn

p→ y (where y is a constant), then

• XnYn
d→ Xy

• Y −1
n Xn

d→ (y−1)X, if y−1 exists

2. If Xn
p→ x and Yn

p→ y (where x and y are constants), then

• XnYn
p→ xy

• Y −1
n Xn

p→ (y−1)X, if y−1 exists

This second form is the result of the simple fact that convergence in distribution to a constant
implies convergence in probability.

With these tools in hand we can characterize the asymptotic distribution of the OLS estimator.
We’ll do this in parts:

1. Let’s start with the expression 1
N

∑N
i=1 xix

′
i, what happens here as N grows? By

Assumption B4 we know that E [xix′i] <∞ and that by Theorem 14 (xix′i)Ni=1 are N iid
matrices (i.e., if xi and xj are iid, then x2

i and x2
j are iid). As such, the conditions of

Theorem 13 are satisfied and we have that

1
N

N∑
i=1

xix
′
i

p→ E[xix′i].

Further the determinant is a continuous function. By Assumption B5 det(E[xix′i]) > 0,
and

det
(

1
N

N∑
i=1

xix
′
i

)
p→ det(E[xix′i]) > 0
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by the continuous mapping theorem. This means that for sufficiently large N ,(
1
N

∑N
i=1 xix

′
i

)−1
, and thus β̂ will exist with near certainty. Likewise, the matrix inverse

is a continuous function for matrices with non-zero determinants, so

(
1
N

N∑
i=1

xix
′
i

)−1
p→ E[xix′i]−1,

by the CMT.

2. Next consider 1
N

∑N
i=1 xiεi. It follows from Assumption B3 that (xiεi)Ni=1 are N iid

vectors. By Assumptions B4 and B2, xi and εi are linearly independent of each other
with

E [xiεi] = Ex[E[xiεi|X]] = Ex[xi E[εi|X]] = Ex[xi E[εi|xi]] = 0.

The conditions of Theorem 13 are satisfied with

1
N

N∑
i=1

xiεi
p→ E[xiεi] = 0.

3. We can now apply Slutsky’s theorem to say:

(
1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiεi
p→ E[xix′i]0 = 0

And since the sum operator is continuous we can again apply the continuous mapping
theorem to get

β̂ = β +
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiεi

p→ β + 0 By CMT and Slutsky
p→ β.

This takes us to our next property
Property B12 Under Assumptions B1-B5, OLS exists with near certainty for large enough
N and β̂N p→ β.

Note that Property B12 is gives us both existence (for large enough N) and consistency of
the OLS estimator. Consistency is great, but we’d also like to know something about the
distribution of β̂. Without an assumption on ε, however, we cannot characterize the finite
sample distribution. Instead, we will rely on our old friend the Central Limit Theorem, which
we restate, in vector form
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Theorem 17 (Central Limit Theorem) Let X1, . . . , XN be iid random varibles with expected
value µ and variance Ω (both finite), then for all x ∈ R

√
N

(
1
N

N∑
i=1

Xi − µ
)

d→ N(0,Ω).

To satisfy the conditions of Theorem 17 we need the following assumption
Assumption B6 Var(xiεi) is finite.

Now, we’re cooking. Let’s rewrite β̂ to look like the CLT.

√
N
(
β̂N − β

)
=
(

1
N

N∑
i=1

xix
′
i

)−1 (√
N

N

N∑
i=1

xiεi

)
.

We know that (xiεi)∞i=1 are a sequence of iid random variables with expectation 0 and finite
variance by Assumptions B2, B3, B4, and B6. This means that we have satisfied the conditions
for Theorem 17. This gives us:

√
N

(
1
N

N∑
i=1

xiεi

)
d→ N(0,Var(xiεi)),

Likewise, by the arguments we used to show Property B12 we have

(
1
N

N∑
i=1

xix
′
i

)−1
p→ E[xix′i]−1.

Combining terms and applying Slutsky’s theorem we get

√
N
(
β̂N − β

)
d→ E[xix′i]−1Z

where Z ∼ N(0,Var(xiεi)). As such we find ourselves the next property
Property B13 Under Assumptions B1-B6, the OLS estimates are asymptotically normal
such that √

N
(
β̂N − β

)
d→ N

(
0,E[xix′i]−1 Var(xiεi) E[xix′i]−1

)
= N(0,Ω).

In order to use Property B13 we need to have expressions for E[xix′i] and Var(xiεi) in terms
of data. Note that

Var(xiεi) = E[xix′iε2
i ]− E[xi] E[εi] = E[xix′iε2

i ]

134



We can backout consistent estimates based on assumptions we’ve made:

1
N

N∑
i=1

xix
′
i

p→ E[xix′i]

1
N

N∑
i=1

xix
′
iε̂

2
i = 1

N

N∑
i=1

xix
′
i(yi − β̂′xi)2

= 1
N

N∑
i=1

xix
′
i(β′xi + εi − β̂′xi)2

= 1
N

N∑
i=1

xix
′
i(εi − (β̂ − β)′xi)2

Given that (β̂ − β) p→ 0, we can apply Slutsky’s theorem and the CMT to we get

1
N

N∑
i=1

xix
′
iε̂

2
i

p→ Var(xiεi).

Note that we’ve made some additional assumptions on the existence moments of xi, but
no real harm done, and it’s not overly helpful to get into the weeds on this. Now however,
we can now write out a consistent variance estimator for

√
N(β̂ − β) in terms of the data.

Specifically, we have

Ω̂ =
[

1
N

N∑
i=1

xix
′
i

]−1 [ 1
N

N∑
i=1

xix
′
iε̂

2
i

] [
1
N

N∑
i=1

xix
′
i

]−1
p→ E[xix′i]−1 Var(xiεi) E[xix′i]−1.

Which can be computed as

âvar(β̂) = 1
N

Ω̂

= (X ′X)−1
(

N∑
i=1

xix
′
iε̂

2
i

)
(X ′X)−1

= (X ′X)−1 (X ′ε̂Xε̂) (X ′X)−1,

where Xε̂ is the matrix X with each column is element-by-element multiplied by ε̂. This
estimate of 1

N
Ω is called the “sandwich” estimator or the Huber-White covariance matrix, or

the “robust” variance matrix. You’ll often see reference to “robust” standard errors, this is
where they come from. This particular estimate is only asymptotically valid (don’t forget
that). One final tweak. We often add in a degrees of freedom correction to the robust version,
such that

âvar(β̂) = N

N −K
(X ′X)−1 (X ′ε̂Xε̂) (X ′X)−1 = 1

N −K
Ω̂.
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For larger N this doesn’t make a big difference. This format will open the door for us to make
large-N inferences about β without putting strong assumptions on ε like homoskedasticity or
normality. Notably let rse(β̂k) be the “robust” standard error from taking the diagonal of
the asymptotic covariance matrix. Then for large N we can say that

β̂k − b
rse(β̂k)

a∼ N(0, 1).

Why does this matter? It allows us to test hypotheses if we believe that homoskedasticity
fails to hold. One common reason for homoskedasticity failing is if there’s more “noise” at
some values of xi. For example, if we want use income to predict expenditure on meals we
might notice that at low incomes the variance in meal choice is more limited and there is
less variance. As income rises, there are more options and thus more variance (Whataburger
versus The Republic).

However, let’s suppose we are in a homoskedastic world
Assumption B7 E[ε2

i |xi] = σ2
ε

Now we can make some simplifications:

Var(xiεi) = E[xix′iε2
i ]− E[(xiεi)]2

= E[xix′i E[ε2
i |xi]]

= E[xix′iσ2
ε ]

= σ2
ε E[xix′i]

Substituting this into the above we find

Ω0 = E[xix′i]−1 Var(xiεi) E[xix′i]−1 = σ2
ε E[xix′i]−1,

which looks a lot like our finite sample version. As such we have a new result
Property B14 Under Assumptions B1-B7, the OLS estimates are asymptotically normal
such that √

N
(
β̂N − β

)
d→ N

(
0, σ2

ε E[xix′i]−1
)
.

Time out for a second. We now have two forms of the asymptotic covariance matrix of β̂.
The homoskedastic version is estimated as

âvar(β̂) = σ̂2
ε(X ′X)−1 = 1

N
Ω̂0,
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which is aysmptotically valid under assumptions B1-B7. Under the same assumptions, it
is used for V̂ar(β̂|X), so we can use this formula in either large or small samples without
concern. The heteroskedastic version is estimated as

âvar(β̂) = N

N −K
(X ′X)−1 (X ′ε̂Xε̂) (X ′X)−1 = 1

N −K
Ω̂,

which is only valid in large samples. We’ll return to these differences later on. For now,
just file them away. Note that if homoskedasticity is a good assumption, than these will be
asymptotically equivalent.

Let’s go back to the characterization under Property B13. Namely that

√
N
(
β̂N − β

)
d→ N

(
0,E[xix′i]−1 Var(xiεi) E[xix′i]−1

)
= N(0,Ω).

Now suppose we want to test a set of J linear hypotheses (like before) such that

H0 : Aβ = b

HA : Aβ 6= b

What would our test statistic be? Like before we start by assuming a true null hypothesis
such that

Aβ̂ − b = Aβ̂ − Aβ

= A(β̂ − β)
√
N(Aβ̂ − b) = A

√
N(β̂ − β)

√
N(Aβ̂ − b) d→ N(0, AΩA′)

[AΩA′]−1/2
√
N(Aβ̂ − b) d→ N(0, IJ)

N(Aβ̂ − b)′[AΩA′]−1(Aβ̂ − b) d→ χ2
J

N(Aβ̂ − b)′[AΩ̂A′]−1(Aβ̂ − b) d→ χ2
J

(Aβ̂ − b)′
[
A

1
N

Ω̂A′
]−1

(Aβ̂ − b) d→ χ2
J

(Aβ̂ − b)′
[
Aâvar(β̂)A′

]−1
(Aβ̂ − b) d→ χ2

J

Note that can replace Ω with Ω̂ or Ω̂0 as either can be consistent for Ω, depending whether
we want to use Assumption B7. Unsurprisingly this looks like our finite sample F test from
before.

Anyway going back to the linear hypothesis test we have our next property:
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Property B15 Under Assumptions B1-B6, the null hypothesis H0 : Aβ = b implies a tests
statistic

W = (Aβ̂ − b)′
[
Aâvar(β̂)A′

]−1
(Aβ̂ − b) d→ χ2

J .

Not all interesting tests are linear however. Sometimes we might have a length J nonlinear
hypothesis of the form C(β). In order to make progress here, we will need to know the
distribution of C(β̂). This is a question about a distribution of a nonlinear function of a
normally distributed random variable.
We’ve seen nonlinear transformations of random variables before. The first thing that you
might think to do is to take a Taylor series approximation of C(β̂) around the true β.

C(β̂) = C(β) +DβC(β)(β̂ − β) + o(|β̂ − β|)

Recall that o(|β̂ − β|) means that o(|β̂ − β|)→ 0 “faster” than |β̂ − β| goes to 0. Note that
β̂ − β p→ 0 (at a rate of

√
N), and so we’re entire right hand side converges to C(β) by the

continuous mapping theorem and Slutsky’s theorem:

C(β̂) p→ C(β).

Recall that OLS is asymptotically normal,
√
N(β̂ − β) d→ N(0,Ω). If we rearrange some

terms in the Taylor series from above we get

√
N(C(β̂)− C(β)) = DβC(β)︸ ︷︷ ︸

constant

√
N(β̂ − β)︸ ︷︷ ︸

Converges to N(0,Ω)

+
√
No(|β̂ − β|)︸ ︷︷ ︸
converges to 0

.

We can apply Slutsky’s theorem and the CMT to get:
Property B16 Under Assumptions B1-B6, the distribution of C(β̂) = 0, where C is
continuously differentiable, is asymptotically normal with:

√
N(C(β̂)− C(β)) d→ N (0, DβC(β)ΩDβC(β)′) .

Notice that this is the delta method expression for the variance of C(β̂). In the scalar case we
squared the derivative of C and multiplied by the variance. This expression is the multivariate
extension of that. This result gives us a firm basis for using the delta method to produce
standard errors for transformations of OLS estimates.

Applying the logic from the linear hypothesis test we can get to a usable test statistic for the
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hypothesis that C(β) = 0, specifically we can standardize and square to get

C(β̂)′︸ ︷︷ ︸
Obs−Null

[
DβC(β) 1

N
ΩDβC(β)′

]−1

︸ ︷︷ ︸
Delta method variance

C(β̂)︸ ︷︷ ︸
Obs−Null

d→ χ2
J ,

where again we exploit the convergence of C(β̂)→ C(β) to rewrite this as a new property
Property B17 Under Assumptions B1-B6, the null hypothesis H0 : C(β) = 0 implies a tests
statistic

W = C(β̂)′
[
DβC(β̂)âvar(β̂)DβC(β̂)′

]−1
C(β̂) d→ χ2

J .

This test is called a Wald test, and it’s straightforward to see that it encompasses the linear
hypothesis case. With Assumption B7 Ω is replaced by Ω0.

If we make a final assumption
Assumption B8 ε are normally distributed

then we can get back all the finite sample tests from before, but we also get one new asymptotic
result (and also a new finite result). In fact, the final property asymptotic property we will
show depends heavily on Assumption B8. Under B8 We can start by rewriting the data
generating process to be

yi | xi
iid∼ N(β′xi, σ2

ε).

This representation gives us the following likelihood model for yi

L(β, σ2
ε |y,X) =

N∏
i=1

1√
2πσ2

ε

exp
(
− 1

2σ2
ε

(yi − β′xi)2
)

L(β, σ2
ε |y,X) =

N∑
i=1
−1

2
(
log(2π) + log

(
σ2
ε

))
+
(
− 1

2σ2
ε

(yi − β′xi)2
)

= −N2 log(2π)− N

2 log(σ2
ε) +

N∑
i=1

(
− 1

2σ2
ε

(yi − β′xi)2
)
.
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With FOC

DβL(β, σ2
ε |y,X) = 1

σ2
ε

N∑
i=1

(yi − β′xi)xi

0 = 1
N

N∑
i=1

(yixi − xix′iβ)

0 = 1
N

N∑
i=1

xiyi −
1
N

N∑
i=1

xix
′
iβ

β̂MLE =
(

1
N

N∑
i=1

xix
′
i

)−1 ( 1
N

N∑
i=1

xiyi

)
= (X ′X)−1X ′y.

This is our next property of OLS
Property B18 Under Assumptions B1-B8, β̂ is the MLE of β.

So β̂MLE = β̂. What about σ̂2
ε?

Dσ2
ε
L(β, σ2

ε |y,X) = − N

2σ2
ε

+
N∑
i=1

1
2σ4

ε

(yi − β′xi)2

0 = −N + 1
σ2
ε

N∑
i=1

(yi − β′xi)2

σ̂2
ε,MLE = 1

N

N∑
i=1

(yi − β̂′xi)2 = ε̂′ε̂

N
,

which is not the unbiased estimate σ̂2
ε . Asymptotically, the fact that β̂ is an MLE tells us

atleast one new fact about it. Recall that if θ̂ is an MLE, and certain regularity conditions
hold, then

√
N(θ̂ − θ) d→ N

0,
(
I(θ)
N

)−1
 ,

where I(θ) = −E[Hθ log(L(θ; y))] is the estimated Fisher Information.
Recall that the Cramér-Rao lower bound tells us that the lowest possible variance any
unbiased estimator can achieve is equal to the inverse Fisher Information, and that MLE
asymptotically obtain the Cramér-Rao lower bound.

Let’s see what this lower bound is for unbiased estimators. Let θ = (β, σ2) and recall that
the log-likelihood under our current assumptions is

L(β, σ2
ε |y,X) = −N2 log(2π)− N

2 log(σ2
ε) +

N∑
i=1

(
− 1

2σ2
ε

(yi − β′xi)2
)
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with gradient

DθL(β, σ2
ε |y,X) =

 1
σ2
ε

∑N
i=1(yi − β′xi)xi

− N
2σ2
ε

+∑N
i=1

1
2σ4
ε
(yi − β′xi)2


and the hessian

HθL(β, σ2
ε |y,X) =

 − 1
σ2
ε

∑N
i=1 xix

′
i − 1

σ4
ε

∑N
i=1(yi − β′xi)xi

− 1
σ4
ε

∑N
i=1(yi − β′xi)xi

∑N
i=1

1
2σ4
ε
− 1

σ6
ε
(yi − β′xi)2

 .
The Fisher Information

I(θ)
N

= −E
[ 1
N
HθL(β, σ2

ε |y,X)
]

=
 1
σ2
ε

E[xix′i] 1
σ4
ε

E[xiεi]
1
σ4
ε

E[xiεi] − 1
2σ4
ε

+ 1
σ6
ε

E[(yi − β′xi)2]


=
σ2

ε E[xix′i] 0
0 1

2σ4
ε


(
I(θ)
N

)−1

=
σ2

ε E[xix′i]−1 0
0 2σ4

ε

 .
Note that the upper left looks like the OLS covariance matrix with homoskedastic errors.
This implies with with normality and homoskedasticity, no asymptotically unbiased estimator
can have smaller variance than OLS.
Property B19 Under Assumptions B1-B8, OLS is asymptotically efficient. No asymptoti-
cally unbiased estimator is better than OLS (linear or not).

To clarify
√
N(θ̂ − θ) d→ N

0,
(
I(θ)
N

)−1


θ̂
asy∼ N

(
θ, I(θ)−1

)
or

β̂MLE
asy∼ N

(
β,
σ2

N
E[xix′i]−1

)

and
σ̂2
MLE

asy∼ N

(
σ2,

2σ4

N

)

Recall that asymptotic variance of the MLE is the Cramér-Rao lower bound, which is the
lowest possible variance of an unbiased estimator. So if we have Assumptions B1-B8 then
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OLS is asymptotically efficient hit the Cramér-Rao lower bound. It can be shown that OLS
is the unique minimum variance unbiased estimator for any sample size under B1-B8, but we
haven’t introduced enough tools for that, so take my word for it.
Property B20 OLS is the minimum variance estimator for β among all unbiased estimators
(linear or not) under Assumptions B1-B8.

Another justification for the OLS estimator can be found if we want to find the optimal
predictor of y. If E[yi|xi] is linear and we have our Gauss-Markov assumptions, it should be
clear that OLS will be the optimal predictor. But what if E[yi|xi] isn’t actually linear? What
if we lose Assumption B1 and in it’s place we just have yi = E[yi|xi] + εi? Then the MSE in
predicting nonlinear y using a potential incorrect linear functional form is given by

MMSEy(β̂) = argmin
β

E[(yi − β′xi)2].

With a little bit of algebra (replace y with E[yi|xi] + εi, rearrange and simplify), we can
rewrite this to be

MMSEy(β̂) = argmin
β

E[(yi − E[yi|xi])2] + E[(E[yi|xi]− β′xi)2]

The first term doesn’t contain β, so to minimize the MSE we focus on the last term and solve
the FOC

Dβ E[(E[yi|xi]− β′xi)2] = 0

−2 E[(E[yi|xi]− β′xi)xi] = 0

E[xi E[yi|xi]] = E[xix′i]β.

Let’s look more at the left hand side

E[xi E[yi|xi]] = E[xi(yi − εi)]

= E[xiyi]− E[xiεi]

= E[xiyi]

Now we see that the FOC for finding the minimum MSE is that

β̂ = E[xix′i]−1 E[xiyi].

142



In sample, we would estimate these with the sample means

β̂ =
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiyi.

Applying the usual LLN arguments provides consistency of the sample means for their
expected values. The end result is that
Property B21 Under Assumptions B2-B6, OLS is the minimum MSE predictor of yi among
all linear estimators.

The full set of OLS justifications that we have derived is:

Assumptions Properties

B1-B3 Unbiased for β (B1)
B2-B5 BLE for y (B21)
B1-B5 Consistent for β (B12)
B1-B5 β̂ almost surely exists as N increases (B12)
B1-B5.A β̂ exists for any N ≥ K (B2)
B1-B6 β̂

asy∼ N (B13)
B1-B6 Asymptotic hypothesis tests for linear and nonlinear

hypotheses about β (B13, B15, B17)
B1-B6 Delta Method provides asymptotically correct variance for

nonlinear transformations of β̂ (B16)
B1-B6 Asymptotic confidence intervals for E[y|X = x∗]
B1-B7 BLUE for β (B11)
B1-B8 MLE/BUE for β (B18-B20)
B1-B8 Exact hypothesis tests for linear hypotheses about β (B8-B9)
B1-B8 Exact confidence intervals for E[y|X = x∗] and predictions B10

Note: Anything listed as B1-B6 can be B1-B7 if you use Ω0 instead of Ω.

4.2 Application

Let’s step aside and consider a specific problem with real data. We’re going to look at
how counties evaluate the value of homes for property tax. Specifically, we want to know if
property assessments by the county accurately reflect real home values. We will look at some
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data from the Shadyside neighborhood of Pittsburgh, Pennsylvania. Let Ai denote the county
assessment of house i and let Si be the sale price of the home. If assessments are accurate
we would expect Ai = Si, but we want to allow for some fluctuations and random chance
differences between assessments and sales so we want to relate sales price to assessments plus
noise

Ai = Si + εi,

where εi denotes the random error that generates the gaps between “true” home value and
assessments and E[ε|Si] = 0. Note that we are assuming the sales price reflects true value.
We will consider the consequences of having sales price be a noisy reflect of true value later.

We can make this a more general more by rewriting it in linear regression format

Ai = β0 + β1Si + εi.

Now the expected sales price of house i given it’s assessment is E[Ai|Si] = β0 + β1Si. If our
original model is correct then we expect β0 = 0 and β1 = 1. We are interested in testing these
hypotheses. We will make assumptions B1-B8, which include: Independence of observations,
Homoskedasticity, Normality, and Full rank and finiteness of

E
 1 Si

Si S2
i

 .
Note that this will be full rank so long as it is not the case that Si is not realized as a constant
c with probability 1. With this structure on the problem we can test our two hypotheses
both individual and jointly such that

H0 : βk = bk

H0 : Aβ = b.

With the above assumptions this produces test statistics

β̂k − bk
σ̂ε
√

[(X ′X)−1]kk
= β̂k − bk
s.e.(β̂k)

∼ tN−2

(Aβ̂ − b)′[Aσ̂2
ε(X ′X)−1A′]−1(Aβ̂ − b)

2 ∼ F2,N−2.

Where A is an identity matrix of size 2 and b = (0, 1)′. Note that if we wanted to drop
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assumption B8, we get similar tests, but we have to rely on the asymptotic distributions,

β̂k − bk
σ̂ε
√

[(X ′X)−1]kk
= β̂k − bk
s.e.(β̂k)

d→ N(0, 1)

(Aβ̂ − b)′[Aσ̂2
ε(X ′X)−1A′]−1(Aβ̂ − b) d→ χ2

2.

We can also drop assumption B7 if we use the robust covariance matrix.

β̂k − bk√[
1

N−K Ω̂
]
kk

= β̂k − bk
rse(β̂k)

d→ N(0, 1)

(Aβ̂ − b)′
[
A
[ 1
N −K

Ω̂
]
A′
]−1

(Aβ̂ − b) d→ χ2
2.

Let’s try it out.

library(readstata13)
library(lmtest)
library(sandwich)
library(stargazer)
library(car)

shady <- read.dta13("Rcode/datasets/shady.dta")
shady$salepric <- shady$salepric/1000000 #hundreds of thousands of dollars
shady$asprice <- shady$asprice/1000000
X <- cbind(1, shady$salepric)
eigen((t(X) %*% X)/nrow(X), only.values = TRUE)

$values [1] 1.02003029 0.01040915

$vectors NULL

model1 <- lm(asprice~salepric,data=shady)

#exact type doesn't matter much, but HC1 is what's in the notes.
# HC3 (default) is probably better in finite samples according to recent sims
robust <- vcovHC(model1,type = "HC1")

stargazer(model1, model1, no.space = TRUE, label='tab:example1',
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header=FALSE, column.labels = c("Classic S.E.'s", "Robust S.E.'s"),
covariate.labels = c("Sales price", "Intercept"),
dep.var.labels = "Apraisal", title = "Shadyside Apraisals",
keep.stat = "n",
type='latex', #switch to latex for problem sets
se = list(NULL, #NULL uses default classical errors (homoskedastic)

sqrt(diag(robust))))

Table 3: Shadyside Apraisals

Dependent variable:
Apraisal

Classic S.E.’s Robust S.E.’s
(1) (2)

Sales price 0.786∗∗∗ 0.786∗∗∗
(0.013) (0.037)

Intercept 0.023∗∗∗ 0.023∗∗∗
(0.002) (0.005)

Observations 1,097 1,097

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results of the regression are reported in Table 3. We can test our hypothesis separately.
First, let’s consider H0 : β0 = 0. We test this by finding that the t ratio β̂0−0

se(β̂0) = 10.322. This
is greater than the critical t value of ± 1.962 or the critical z value of ± 1.960. Because our
test statistic is more extreme than our critical values, we reject the null hypothesis that β0 is
zero.

Second, consider H0 : β1 = 1. Now our t statistic is β̂1−1
se(β̂1) = -16.726 . We can compare this

to the same critical value and see that this is below the negative critical value. As such, we
reject the hypothesis that β1 = 1. Note we can also conduct these individual tests as a Wald
test.

linearHypothesis(model1,"(Intercept)=0")

## Linear hypothesis test
##
## Hypothesis:
## (Intercept) = 0
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##
## Model 1: restricted model
## Model 2: asprice ~ salepric
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1096 2.2954
## 2 1095 2.0918 1 0.20355 106.55 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

round(sqrt(106.55),3)

## [1] 10.322

linearHypothesis(model1,"salepric=1")

## Linear hypothesis test
##
## Hypothesis:
## salepric = 1
##
## Model 1: restricted model
## Model 2: asprice ~ salepric
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1096 2.6263
## 2 1095 2.0918 1 0.53445 279.76 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

round(sqrt(279.76),3)

## [1] 16.726

Notice that the F statistics here are the square of the individual t statistics. Finally, we
can do the more appropriate joint hypothesis tests. We’ll look at this 3 ways: with all
assumptions, without B8, and without B7 or B8.

linearHypothesis(model1, c("(Intercept)=0", "salepric=1"))

## Linear hypothesis test
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##
## Hypothesis:
## (Intercept) = 0
## salepric = 1
##
## Model 1: restricted model
## Model 2: asprice ~ salepric
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1097 2.6815
## 2 1095 2.0918 2 0.58966 154.33 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1, c("(Intercept)=0", "salepric=1"), test = "Chisq")

## Linear hypothesis test
##
## Hypothesis:
## (Intercept) = 0
## salepric = 1
##
## Model 1: restricted model
## Model 2: asprice ~ salepric
##
## Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
## 1 1097 2.6815
## 2 1095 2.0918 2 0.58966 308.66 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1, c("(Intercept)=0", "salepric=1"),
test = "Chisq", vcov = robust)

## Linear hypothesis test
##
## Hypothesis:
## (Intercept) = 0
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## salepric = 1
##
## Model 1: restricted model
## Model 2: asprice ~ salepric
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 1097
## 2 1095 2 39.33 2.881e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that they all agree. That’s a good thing for our analysis. We will also make sure that
these R commands do what we think they do, by doing everything “by hand”

X <- cbind(1, shady$salepric)
y <- shady$asprice
b.hat <- solve(t(X) %*% X) %*% t(X) %*% y
cbind(b.hat, model1$coefficients)

## [,1] [,2]
## (Intercept) 0.02306402 0.02306402
## salepric 0.78579266 0.78579266

e.hat <- drop(y-X%*%b.hat)
N <- length(y)
sigma.hat2 <- sum(e.hat^2)/(N-2)
V0 <- sigma.hat2* solve(t(X)%*%X)
meat <- crossprod(e.hat*X)
bread <- solve(crossprod(X))
V <- (bread %*% meat %*% bread) *(N/(N-2))
cbind(V, robust)

## (Intercept) salepric
## (Intercept) 2.089289e-05 -0.000164845 2.089289e-05 -0.000164845
## salepric -1.648450e-04 0.001375536 -1.648450e-04 0.001375536
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A <- diag(2)
b <- c(0,1)
(t(A%*%b.hat - b) %*% solve(A %*% V0 %*% t(A)) %*% (A%*%b.hat-b))/2

## [,1]
## [1,] 154.3308

t(A%*%b.hat - b) %*% solve(A %*% V0 %*% t(A)) %*% (A%*%b.hat-b)

## [,1]
## [1,] 308.6616

t(A%*%b.hat - b) %*% solve(A %*% V %*% t(A)) %*% (A%*%b.hat-b)

## [,1]
## [1,] 39.33002

#Both the F and Chi2 are positive only so
## we want just 5% in the top tail
qf(.95, df1=2, df2=N-2)

## [1] 3.003943

qchisq(.95, df=2)

## [1] 5.991465

So far, we’ve seen strong evidence against the null model that Ai = Si. We can explore
this a little further. First of all note that, because the slope is less than one, appraisals are
increasing less than a dollar every time actual value increases by a dollar. Specifically, we
see that for every million dollar increase in “real” value there is only a $790,000 increase in
appraisal, on average. Likewise, a there is a floor on appraisals. A home with a true value of
0 would be appraised at an average of about $23,000. This tells us that low-valued homes
are over-assessed on average, but high value homes will be under-assessed. we can find the
inflection point by setting E[A∗|S∗] = β0 + β1S

∗ = S∗ and solving for S∗ to get

Ŝ∗ = 0.023/(1− 0.786) = 0.108.

Homes with a true value of about $108,000 are accurately assessed on averaged. Homes with
a value less than that are over appraised, while those above are under appraised, based on
the fitted model. We can consider that visually too,
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plot(asprice~salepric,data=shady,
col="grey20",
xlab="Sale price (Millions)",
ylab="Assessed price (Millions)")

abline(a=0,b=1, col="blue",lwd=2)
abline(model1, col="red",lwd=2);
segments(x0=c(0.108,0.108),x1 =c(0.108,-0.05),

y0=c(-0.05,0.108), y1=c(0.108,0.108), lwd=2,lty = 2)
legend(x="topleft", legend=c("Regression model", "Null model (45-degree)"),

col=c("red", "blue"), lty=1,lwd=2)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Sale price (Millions)

A
ss

es
se

d 
pr

ic
e 

(M
ill

io
ns

)

Regression model
Null model (45−degree)

We
can also apply the delta method to build a confidence interval around that inflection point.
Note that S∗ is a nonlinear function of parameters S∗ = C(β) = β0

1−β1
. To use the delta

method we need the gradient w.r.t to β.

DβC(β) =
(

1
1− β1

,
β0

(1− β1)2

)
.

The standard error of Ŝ∗ then becomes

s.e.(Ŝ∗) =
√
DβC(β̂)V̂ DβC(β̂)′,

where V̂ is either the robust or classic variance matrix. Let’s stick with the robust for this
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example since we have a large N and it makes fewer assumptions. Let’s compute our standard
error first and then find the interval.

DC <- c(1/(1-model1$coef['salepric']),
model1$coef['(Intercept)']/(1-model1$coef['salepric'])^2)

delta.se <- drop(sqrt(DC %*% robust %*% DC))

Our confidence interval under the delta method is normal so we use the z value of 1.96 to
build a 95% confidence interval

s.star <- model1$coef['(Intercept)']/(1-model1$coef['salepric'])
lo <- s.star-1.96*delta.se
hi <- s.star+1.96*delta.se
c(lo, hi)

## (Intercept) (Intercept)
## 0.0970738 0.1182691

# Using the car package
# deltaMethod used to have a problem with
# (Intercept), so make sure you have the most
# recent version
deltaMethod(model1,

g. = "(Intercept)/(1-salepric)",
vcov. = robust)

## Estimate SE 2.5 % 97.5 %
## Intercept/(1 - salepric) 0.107672 0.005407 0.097074 0.1183

How do we interpret this? We are 95% confident that the true home value where appraisals are
accurate is between $97,074 and $118,269. Remember that 95% confidence means confidence
in the procedure. 95% of 95% confidence intervals contain the true but unknown value of S∗.
If we were to repeat this whole experiment many, many times, the proportion of intervals
containing the true value would tend to 95%.
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5 Specification concerns and extensions

5.1 Model fit measures

The linear model we fit to the data is a model. It’s an approximation. Often times we want
to know whether one approximation is better or worse than another. This is the job of model
fit. Note that ŷi = β̂′xi, ε̂i = yi − ŷi, and as such yi = ŷi + ε̂i. This allows us to break the
total sum of squares into two parts:

y′y = (ŷ + ε̂)′(ŷ + ε̂)

= ŷ′ŷ + ε̂′ε̂+ 2ŷ′ε̂

= ŷ′ŷ + ε̂′ε̂+ 2β̂′X ′ε̂

= ŷ′ŷ + ε̂′ε̂

This formation allows us to form what’s called the “uncentered” R2,

R2
uncentered = 1− ε̂′ε̂

y′y
.

This is called the uncentered version because it measures the variation in y around 0, we can
“center” the measure by measuring things around the mean of y.

y′y −Nȳ2 = ŷ′ŷ −Nȳ2 + ε̂′ε̂.

This first (two) term is now the “centered” explained sum of squares and as always the last
term is the residual sum of squares. The centered R2 is now

R2 = 1− ε̂′ε̂

y′y −Nȳ2 .

As we saw before R2 is a measure of distance between points and lines. It is sometimes
referred to as the “variance [in y] explained [by X].” However, it has some limitations as a
measure of model fit. First and foremost R2 always increases when you add a new variable.
To see this considered the partition data matrix X = [X1, X2]. Define a restricted estimator
that forces β2 to be 0 as

β̂R = argmin
β:β2=0

(y −Xβ)′(y −Xβ).
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Let’s see where this takes us

ε̂′U ε̂U = min
β

y −X
β1

β2

′y −X
β1

β2


≤ min

β

y −X
β1

0

′y −X
β1

0


= ε̂′Rε̂R

ε̂′U ε̂U ≤ ε̂′Rε̂R.

So the restricted estimator will always have a weakly larger RSS. So what? Well that means
the amount of “variance explained” will be smaller because more is left in the residual.

R2
U = 1− ε̂′U ε̂U

y′y −Nȳ2 ≥ 1− ε̂′Rε̂R
y′y −Nȳ2 = R2

R.

Adding any variable to model will improve “fit.” This may be troubling if we were interested
in using R2 for adjudicating among models. However, it’s not the end of the world. Maybe we
can adjust R2 to penalize the addition of “bad” regressors. One attempt at this is called the
“adjusted R2” where instead of comparing sums of squares we look at the variance estimators

R2
adj. = 1− σ̂2

ε

sy
= 1− ε̂′ε̂/(N −K)

(y′y −Nȳ2)/(N − 1) = 1− (1−R2)
(
N − 1
N −K

)
.

What’s going on here? Well this adjusted measure still depends on the SSR and SST, but it
also includes K. Each new variable will improve ε̂′ε̂, but if the improvement isn’t by very
much then the “penalty” of including K may cause the adjusted R2 to decrease.

There are other model fit measures that weigh the relative fit gains against added complexity
of a new parameter. Most commonly are the Akaike (Ah kai e kay) Information Criterion

AIC = N log
(
ε̂′ε̂

N

)
+ 2K

and the Schwarz (Bayesian) Information Criterion (BIC)

BIC = N log
(
ε̂′ε̂

N

)
+K log(N).

What are differences here? Both the AIC and BIC depend on ε̂′ε̂, but they impose different
complexity penalties. Note, that R uses a slightly different formula for AIC and BIC, but
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the gist is unchanged. Notably the BIC more heavily penalizes new parameters for values
of N > 7. Unlike adjusted R2, lower values of the AIC and BIC are preferred. All three of
these methods for comparative model fit are “better” than R2 in the sense that they do not
always increase with new variables, however the penalties are completely arbitrary. As such,
it is not a great basis for variable selection (more on this later).

5.2 Restricted model testing

Another way to think about model fit and comparison is in terms of “restricted models.”
Above we thought about the comparing models based on specific fit statistics, now we’re
going to frame it in terms of comparative model testing. Unlike the above measures, these will
be conducted in the framework of the Wald test for testing linear hypotheses on β. Further,
this framework will be considering model fit within construct of nested model testing. A
nested model is one that can be written as a “restricted” form of another “unrestricted”
model. Specifically define the restricted OLS estimator as

β̂R = argmin
β:Aβ=b

(y −Xβ)′(y −Xβ).

This is a constrained minimization problem. Have you seen these?
Constrained optimization problems are solved using a method called “Lagrange multipliers.”
Notably we write the constrained minimization problem as an unconstrained problem

minf(x)

s.t. g(x) = c

can be written as

L(x, λ) = f(x)− λg(x).

Here, λ are called “Lagrange Multipliers” and there are as many multipliers as there are
constraints to satisfy. Minimizing the Lagrangian function L with respect to x solves the
constrained problem.

Going back to our restricted OLS estimator, the Lagrangian is given by

L(β, λ) = (y −Xβ)′(y −Xβ)− λ′(Aβ − b).
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We can take the first order conditions to find:

DβL(β, λ) = −2X ′y + 2X ′Xβ̂R − A′λ̂ = 0

DλL(β, λ) = Aβ̂R − b = 0

solving the first condition for β̂R

β̂R = (X ′X)−1(X ′y + 1
2A
′λ̂).

This means we need to solve for λ. The FOC wrt to λ is the original constraint so we plug
the estimate β̂R into it.

b = A
(

(X ′X)−1(X ′y + 1
2A
′λ̂)
)

= A(X ′X)−1X ′y + A(X ′X)−1 1
2A
′λ̂

b− A(X ′X)−1X ′y = 1
2A(X ′X)−1A′λ̂

λ̂ = 2
(
A(X ′X)−1A′

)−1
(b− A(X ′X)−1X ′y).

NOW, we’ve got something. We can plug this multiplier λ̂ into the expression for β̂R to get a
value that only includes data and constraints.

β̂R = (X ′X)−1(X ′y + A′
(
A(X ′X)−1A′

)−1
(b− A(X ′X)−1X ′y))

= β̂U − (X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b).

This expression represents the differences in the coefficients between the restricted and
unrestricted models. We can use those to find the differences in model fit:

ε̂R = y −Xβ̂R = y −Xβ̂U +X(X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b)

= ε̂U +X(X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b).

We can measure the increase in “model fit” in the unrestricted versus the restricted (Aβ = b)
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as

ε̂′Rε̂R = (ε̂U +X(X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b))′

(ε̂U +X(X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b))

= ε̂′U ε̂U + 2(Aβ̂U − b)′A′
(
A(X ′X)−1A′

)−1
A(X ′X)−1X ′ε̂U

+ (Aβ̂U − b)′
(
A(X ′X)−1A′

)−1
A(X ′X)−1X ′X(X ′X)−1A′

(
A(X ′X)−1A′

)−1
(Aβ̂U − b)

= ε̂′U ε̂U + 2(Aβ̂U − b)′A′
(
A(X ′X)−1A′

)−1
A(X ′X)−10

+ (Aβ̂U − b)′
(
A(X ′X)−1A′

)−1
A(X ′X)−1A′

(
A(X ′X)−1A′

)−1
(Aβ̂U − b)

= ε̂′U ε̂U + (Aβ̂U − b)′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b)

ε̂′Rε̂R − ε̂′U ε̂U = (Aβ̂U − b)′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b).

We can write the “gap” between the restricted and the unrestricted models as a null or
restricted model

ε̂′Rε̂R − ε̂′U ε̂U = (Aβ̂U − b)′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b).

What does this look like? (Pause for effect). The F test we look at earlier for linear hypothesis
testing! We can rewrite it

F = (Aβ̂U − b)′ (A(X ′X)−1A′)−1 (Aβ̂U − b)/J
σ̂2
ε

= (ε̂′Rε̂R − ε̂′U ε̂U)/J
ε̂′U ε̂U/(N −K) ∼ FJ,N−K .

This means that our F tests can be written in terms of whether the amount of “improvement”
in the unrestricted model is strong enough evidence against the null hypothesis restrictions.
We can press on this “relative improvement” interpretation a little bit more.

Recall,
R2
U = 1− ε̂′U ε̂U

y′y −Nȳ2

R2
R = 1− ε̂′Rε̂R

y′y −Nȳ2

Rewrite these to get
ε̂′U ε̂U = (y′y −Nȳ2)(1−R2

U)

ε̂′Rε̂R = (y′y −Nȳ2)(1−R2
R),
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Plug these into our F statistic.

F = ((y′y −Nȳ2)(1−R2
R)− (y′y −Nȳ2)(1−R2

U)) /J
(y′y −Nȳ2)(1−R2

U)/(N −K) = (R2
U −R2

R)/J
(1−R2

U)/(N −K) ∼ FJ,N−K .

This means that we can consider restricted versus unrestricted models based on the relative
improvements in R2. In some cases, this will allow us to consider whether two regression
models reported in a paper are statistically different from each other based on only the
reported R2 and samples. One special case we frequently consider is called an “omnibus
test” where the null is H0 : β1 = β2 = . . . = βm = 0. Here we’re saying that all the included
(non-constant) covariates have no effect on y. This is a comparison test of whether our
imposed model has any explanatory power (R reports this as the F-statistic on the bottom
line of the summary output. Under the null, there are no X’s (except for the constant) so the
amount of “variance explained” by X is? (answer: 0)

R2
R = 1− ε̂′Rε̂R

y′y −Nȳ2

= 1− (y − 1′β̂R)′(y − 1′β̂R)
y′y −Nȳ2

What is β̂R when there’s only a constant? In this case E[y|X−0 = 0] = E[y] = ȳ.

= 1− (y − 1′ȳ)′(y − 1′ȳ)
y′y −Nȳ2

= 1− y′y − 21′yȳ + 1′1ȳ2

y′y −Nȳ2

= 1−
y′y − 2N

N
1′yȳ + 1′1ȳ2

y′y −Nȳ2

= 1− y′y − 2Nȳ2 +Nȳ2

y′y −Nȳ2

= 1− 1 = 0.

When the regression is only a constant, R2 is zero. This make sense, how can X explain any
variation when X is constant. Our F statistic becomes

F = (R2
U −R2

R)/J
(1−R2

U)/(N −K) = (R2)/(K − 1)
(1−R2)/(N −K) ∼ FK−1,N−K .

This result means that we can conduct this test using only some very commonly reported
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summary statistics (i.e., without access to the underlying data). How neat is that?

5.2.1 Finite sample properties of restricted models (Advanced)

Another way to think about model fit and comparison within this nested framework is in
the finite sample properties of the restricted and unrestricted estimator. Let’s start with the
variance of the two under homoskedasticity

Var(β̂U |X) = σ2
ε(X ′X)−1

Var(β̂R|X) = Var(β̂U − (X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b))

= Var
(
β̂U − (X ′X)−1A′

(
A(X ′X)−1A′

)−1
Aβ̂U

+(X ′X)−1A′
(
A(X ′X)−1A′

)−1
b
)

= Var
((
I − (X ′X)−1A′

(
A(X ′X)−1A′

)−1
A
)
β̂U

+(X ′X)−1A′
(
A(X ′X)−1A′

)−1
b
)

=
(
I − (X ′X)−1A′

(
A(X ′X)−1A′

)−1
A
)

Var
(
β̂U
)

(
I − (X ′X)−1A′

(
A(X ′X)−1A′

)−1
A
)′

=
(

Var
(
β̂U
)
− (X ′X)−1A′

(
A(X ′X)−1A′

)−1
AVar

(
β̂U
))

(
I − (X ′X)−1A′

(
A(X ′X)−1A′

)−1
A
)′

= Var
(
β̂U
)
− 2(X ′X)−1A′

(
A(X ′X)−1A′

)−1
AVar

(
β̂U
)

+ (X ′X)−1A′
(
A(X ′X)−1A′

)−1
AVar

(
β̂U
)
A′
(
A(X ′X)−1A′

)−1
A′(X ′X)−1

= Var
(
β̂U
)
− 2σ2

ε(X ′X)−1A′
(
A(X ′X)−1A′

)−1
A(X ′X)−1

+ σ2
ε(X ′X)−1A′

(
A(X ′X)−1A′

)−1
A(X ′X)−1A′

(
A(X ′X)−1A′

)−1
A′(X ′X)−1

= Var
(
β̂U
)
− σ2

ε(X ′X)−1A′
(
A(X ′X)−1A′

)−1
A(X ′X)−1,

or put in comparative terms

Var(β̂U |X)− Var(β̂R|X) = σ2
ε(X ′X)−1A′

(
A(X ′X)−1A′

)−1
A(X ′X)−1.

The right-hand side is symmetric and positive semidefinite (everything is in quadratic form).
As such we conclude that the restricted estimator has a (weakly) lower variance than the
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unrestricted one. Imposing restrictions can improve an estimator’s variance, what about bias
and mean squared error?

Let’s look at bias and assume that, as usual, y = Xβ + ε reflects the truth and that the
unrestricted model captures it correctly. What damage is done by fitting the restricted model?
Note that we already know that the unrestricted model is unbiased E[β̂U |X] = β. For the
restricted model

bias(β̂R) = E[β̂R]− β

= E[β̂U − (X ′X)−1A′
(
A(X ′X)−1A′

)−1
(Aβ̂U − b)]− β

= −(X ′X)−1A′
(
A(X ′X)−1A′

)−1
(AβU − b)

and the MSE gap

MSE(β̂U)−MSE(β̂R) = σ2
ε(X ′X)−1A′

(
A(X ′X)−1A′

)−1
A(X ′X)−1

− (X ′X)−1A′
(
A(X ′X)−1A′

)−1
(AβU − b)(AβU − b)′

(
A(X ′X)−1A′

)−1
A(X ′X)−1

Under some values of b (which we choose) we can make the bias quite small. This means
that it’s possible to find a restricted estimator that is biased but has an overall lower mean
squared error that the OLS estimator. Note that this does not violate the Gauss-Markov
theorem, because that only considers the set of unbiased estimators.

5.3 Omitted and irrelevant variables

So far we’ve considered measures of model fit and some tests of comparative model testing.
But we haven’t really talked about the consequences of variable selection. We’ve hinted above
that the bias and variance differences between the restricted and unrestricted models will
exist, but let’s explore these a little more thoroughly. Suppose that the true model is

y = X1β1 +X2β2 + ε,

but we only fit the restricted model that includes X1. The OLS estimates of the restricted
model are

β̂R = (X ′1X1)−1X ′1y.
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We can rewrite this

β̂R = (X ′1X1)−1X ′1(X1β1 +X2β2 + ε)

= (X ′1X1)−1X ′1X1β1 + (X ′1X1)−1X ′1X2β2 + (X ′1X1)−1X ′1ε

= β1 + (X ′1X1)−1X ′1X2β2 + (X ′1X1)−1X ′1ε,

which has an expected value of

E[β̂R|X] = β1 + (X ′1X1)−1X ′1X2β2.

As you can see this is not always equal to β1. In this case the OLS estimator is unbiased
only if (X ′1X1)−1X ′1X2β2 = 0. A few ways that we get unbiasedness in this case are

1. β2 = 0, which is to say that the variables in X2 are irrelevant
2. X ′1X2 = 0, which is related to the correlation of the variables in X1 and X2.

Note that this right here is one big reason why we say that β̂ reflects the “association” between
X and y rather than the causal relationship. If we had the perfectly specified model there
would be no omitted variable bias and we could interpret things causally. A lot of research
uses the control variables to get as close as possible to a causal effect by trying different
robustness checks (control specifications). However, the method of control variables is a
very unrealistic way to identify a causal effect. Because of omitted factors, we frequently
find ourselves working with correlation analysis to make a causal story and seeing “how
robust” it is. But it’s best to not use language about “cause” unless you have a more solid
identification argument. We’ll return to this later with instrumental variables, which offer a
big leap towards causal identification.

Do p values and hypothesis tests help with causal versus correlation effects? Nah. Small p
values reflect strong evidence against the null hypothesis if all the assumptions behind
the test are true. Implicit in Assumption B1 is that we have the correct specification. Also,
let’s be clear, holding β̂ fixed, as N increases the standard errors decrease, the test statistics
increase, and the p-values decrease. So we can have an estimate of β̂1 = 0.0000001 and with
large enough N we can use that to reject a null that the truth is β1 = 0. Here is where you
need to be clear on the difference between statistical and substantive significance. I can’t
help you much with that as it requires you to know what a substatively interesting finding
is for your speific research question. For the most part small p values tell us that the true
correlation is unlikely to be exactly 0 (or whatever we’re testing), and then it’s up to us to
determine if the marginal effects are interesting.
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Side bit aside, let’s look at two variables and constant to better understand what omitted
variable bias looks like. Let

yi = β0 + β1xi1 + β2xi2 + εi

represent the truth, but suppose we fit a model with only x1. The OLS estimate is now given
by the same simple OLS estimator we looked early on (covariance to variance)

β̂R1 =
1

N−1
∑N
i=1(xi1 − x̄1)(yi − ȳ)

1
N−1

∑N
i=1(xi1 − x̄1)2

=
1

N−1
∑N
i=1(xi1 − x̄1)(β1(xi1 − x̄1) + β2(xi2 − x̄2) + (εi − ε̄))

1
N−1

∑N
i=1(xi1 − x̄1)2

= β1 + β2

1
N−1

∑N
i=1(xi1 − x̄1)(xi2 − x̄2)

1
N−1

∑N
i=1(xi1 − x̄1)2 +

1
N−1

∑N
i=1(xi1 − x̄1)(εi − ε̄)

1
N−1

∑N
i=1(xi1 − x̄1)2

= β1 + β2
sx1,x2

s2
x1

+
1

N−1
∑N
i=1(xi1 − x̄1)(εi − ε̄)

1
N−1

∑N
i=1(xi1 − x̄1)2 .

The expected value of this quantity then becomes

E[β̂R|x1, x2] = β1 + β2
sx1,x2

s2
x1

+
1

N−1
∑N
i=1(xi1 − x̄1)E[(εi − ε̄)|x1, x2]

1
N−1

∑N
i=1(xi1 − x̄1)2

= β1 + β2
sx1,x2

s2
x1

= β1 + β2
sx2

sx1

rx1,x2 .

When is the bias 0? When β2 = 0 (i.e., x2 is irrelevant), x1 and x2 are uncorrelated, or
sx2 = 0 (the omitted variable is a constant). The direction of the bias is signable if you have
an expectation about the omitted variable. If x1 and x2 both have a positive effect on y

then omitting x2 will bias β̂R1 downwards if the correlation between them is negative and
vice-versa. When there is more than one relevant omitted variable, this effort at signing the
bias becomes overwhelming.

Okay, so what’s the harm in just including more and more variables? If the truth is

y = X1β1 + ε = X[β1, 0],

what happens if we include these extra variables with true parameters 0 as part of an
unrestricted model? The OLS estimates are

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(X[β, 0] + ε) = [β, 0] + (X ′X)−1X ′ε.
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The expected value checks out
E[β̂|X] = [β, 0],

which matches the truth. As such, we don’t induce bias by including irrelevant variables.
However, the variance of the restricted estimator is (derived above)

Var(β̂U |X)− Var(β̂R|X) = σ2
ε(X ′X)−1A′

(
A(X ′X)−1A′

)−1
A(X ′X)−1.

This expression is positive semidefinite (all in quadratic on the RHS). Thus,

z′Var(β̂U |X)z ≥ z′Var(β̂R|X)z, for any z 6= 0.

Including variables weakly raises the variance in the fitted model. The consequences are that
excluding relevant variables will result in biased (and inconsistent) OLS estimates, but the
variance (and possibly the MSE) will be lower than OLS with the correct variables. Extra
variance is the main consequence of “kitchen sink” modeling.

The third thing we should think about though is how do the estimated standard errors and
variance matrices change when we add new variables? For this exploration let’s focus on the
following expression for the variance of β̂j given X

Var(β̂j|X) = σ2
ε(

1−R2
j

)∑N
i=1(xij − x̄j)

.

and the estimated version

V̂ar(β̂j|X) = σ̂2
ε(

1−R2
j

)∑N
i=1(xij − x̄j)

.

Note that the difference here is that σ2
ε is unchanging across models but σ̂2

ε is changing because
the model won’t condition on the unincluded X. This will bias our standard errors upward
because σ̂2

ε will be including the variance of the excluded variables in the data generating
process

Situation Var(β̂j|X) V̂ar(β̂j|X)

Add a relevant but unrelated variable Increases Either direction
Add a relevant but related variable Increases Either direction
Add an irrelevant variable Increases Increases
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What have we learned from this stroll through model fit?

1. Adding more variables always improves R2

2. You can use adjusted R2, AIC, or BIC to penalize complexity and these work for
comparative model fit (not necessarily nested either), but

• No testing
• Arbitrary penalties
• No critical values to tell us better one model should be to say it is better

3. Restricted model testing works for comparing nested models and can be done using R2.
Can be thought of as a test based on how much more R2 is needed to tell models apart.

4. Making increasingly general models by adding many variables will raise the overall
variance (estimates can end far away from truth).

5. Leaving out relevant (effect both main treatment and outcome) leads to bias

6. Goal is to include enough controls to get a “good” estimate for your main parameter of
interest

7. Current best research practice tends to be to have one or two parameters of interest
and choose covariates such that you reduce OVB, but without throwing in the “kitchen
sink” (or garbage can). Sometimes a fine line. Reading helps. Do whatever reviewers
tell you.

5.3.1 Application

library(readstata13)
library(stargazer)
library(car)
library(lmtest)

presdata <- read.dta13("Rcode/datasets/presvote.dta")
presdata$IncShare[33:34] <- c(0.4631,0.5196 ) #add 2008, 2012
presdata$IncShare <- presdata$IncShare*100

model1 <- lm(IncShare~App, data=presdata)
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model2 <- lm(IncShare~App+Growth, data=presdata)
model3 <- lm(IncShare~App+Growth+Inflation, data=presdata)
stargazer(model1,model2,model3,no.space = TRUE, label='tab:example3',

header=FALSE, keep.stat = c("n", "rsq", "adj.rsq", "F"),
type='latex',
covariate.labels = c("Approval", "Growth", "Inflation", "Intercept"),
dep.var.labels = "Vote share")

Table 5

Dependent variable:
Vote share

(1) (2) (3)
Approval 0.226∗∗ 0.235∗∗∗ 0.240∗∗∗

(0.078) (0.059) (0.063)
Growth 1.203∗∗∗ 1.221∗∗∗

(0.323) (0.340)
Inflation 0.098

(0.383)
Intercept 40.408∗∗∗ 36.729∗∗∗ 36.151∗∗∗

(4.238) (3.344) (4.125)
Observations 19 19 19
R2 0.330 0.641 0.643
Adjusted R2 0.290 0.597 0.571
F Statistic 8.354∗∗ (df = 1; 17) 14.305∗∗∗ (df = 2; 16) 9.001∗∗∗ (df = 3; 15)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Let’s go back to our regression model for predicting incumbent party vote share in U.S.
presidential elections, and we’ll consider three models using approval, growth, and inflation.
Notice that when we move from Model 2 to 3 (adding inflation), the adjusted R2 decreases.
What happens to our other measures of model fit?

c(AIC(model2), AIC(model3))

## [1] 103.8899 105.8079

c(BIC(model2), BIC(model3))

## [1] 107.6677 110.5301
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The AIC and the BIC both increase (closer to 0). All three of these measures thus indicate
that adding inflation does not improve model fit enough to justify using the extra parameter.
We can test the hypothesis that the effects of approval, growth, and inflation are all 0.

H0 :βapproval = βgrowth = βinflation = 0

HA : Not H0

Recall that this test is an F test based on the R2 of model 3.

F = R2/(K − 1)
(1−R2)/(N −K) = 0.643/3

(1− 0.643)/(19− 4) = 9.001.

Notice that this matches the F statistic reported for model 3. We want to know if the
probability of observing a test statistic as or more extreme than 9.001.

r2 <- summary(model3)$r.sq
F.stat <- (r2/(4-1)) / ((1-r2)/(19-4))
F.stat

## [1] 9.00095

pf(F.stat, df1=3,df2=19-4,lower.tail = FALSE)

## [1] 0.001187221

The probability of observing an F statistic as or more extreme than 9.001 if the null hypothesis
is true, is p = 0.001 < 0.05; this is strong enough evidence to reject the null hypothesis. We
can also find this using the linear hypothesis functions

linearHypothesis(model3, c("App=0", "Growth=0", "Inflation=0"))

## Linear hypothesis test
##
## Hypothesis:
## App = 0
## Growth = 0
## Inflation = 0
##
## Model 1: restricted model
## Model 2: IncShare ~ App + Growth + Inflation
##
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## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 18 482.40
## 2 15 172.27 3 310.13 9.0009 0.001187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also consider the joint hypothesis that the effects of both growth and inflation are
equal to 0.

H0 :βgrowth = βinflation = 0

HA : Not H0

This is still an F test and this is also a restricted model test where the restrictions are given
by the null hypothesis. Note that this is a comparison test between models 1 and 3. The test
statistic is again an F test

F = (R2
U −R2

R)/J
(1−R2

U)/(N −K) = (0.643− 0.330)/2
(1− 0.643)/(19− 4) = 6.576.

We can use this to find a p value

r2.Res <- summary(model1)$r.sq
F.stat <- ((r2-r2.Res)/2)/((1-r2)/(19-4))
F.stat #rounding differences

## [1] 6.581363

pf(F.stat, df1=2, df2=19-4,lower.tail = F)

## [1] 0.008874099

## two identical versions of this test ##
linearHypothesis(model3, c("Growth=0", "Inflation=0")) #regular F test

## Linear hypothesis test
##
## Hypothesis:
## Growth = 0
## Inflation = 0
##
## Model 1: restricted model
## Model 2: IncShare ~ App + Growth + Inflation

167



##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 17 323.45
## 2 15 172.27 2 151.17 6.5814 0.008874 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

waldtest(model3, model1) #F test using R^2

## Wald test
##
## Model 1: IncShare ~ App + Growth + Inflation
## Model 2: IncShare ~ App
## Res.Df Df F Pr(>F)
## 1 15
## 2 17 -2 6.5814 0.008874 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

which is less than 0.05. We can reject the null hypothesis that both growth and inflation
have no effect on incumbent vote share.

We can also consider a simulation to explore the three factors of interest: bias in β̂, true
variance in β̂, and bias in the standard errors of β̂.

### Omitted and irrelevant Variables ####
set.seed(1)
N <- 50
SIGMA <- matrix(c(1,.7,0,.8,

.7,1,0,.8,
0,0,1, -.45,
.8, .8,-.45,1), nrow=4)

X <- replicate(4, rnorm(N))
X <- t(t(chol(SIGMA) ) %*% t(X))
cor(X)

## [,1] [,2] [,3] [,4]
## [1,] 1.00000000 0.62596655 0.02628723 0.7487934
## [2,] 0.62596655 1.00000000 0.02002898 0.7848929
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## [3,] 0.02628723 0.02002898 1.00000000 -0.4362338
## [4,] 0.74879342 0.78489292 -0.43623377 1.0000000

sigma2 <- 4
eps <- rnorm(N, sd=sqrt(sigma2))
beta <- c(-1, 1.5,-3,4, 0)
X <- cbind(1, X)
y <- X %*% beta + eps
cor(cbind(y,X[,-1]))

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.00000000 -0.06022011 -0.35314090 0.79257259 -0.5867707
## [2,] -0.06022011 1.00000000 0.62596655 0.02628723 0.7487934
## [3,] -0.35314090 0.62596655 1.00000000 0.02002898 0.7848929
## [4,] 0.79257259 0.02628723 0.02002898 1.00000000 -0.4362338
## [5,] -0.58677072 0.74879342 0.78489292 -0.43623377 1.0000000

# What the model is estimating instead of sigma_epsilon
# sqrt( var(epsilon) + var(X2)*beta2^2 + var(X3)*beta3^2 + var(X4)*beta4^2
# + 2*cov(X2, X3)*beta2*beta3+ 2*cov(X3, X4)*beta3*beta4)
# sqrt( var(epsilon) + var(X3)*beta3^2 + var(X4)*beta4^2 + 2*cov(X3, X4)*beta3*beta4)
# sqrt( var(epsilon) + var(X4)*beta4^2 )
# sqrt( variance of epsilon )
sigma.1 <- sqrt(29)
sigma.2 <- sqrt(20)
sigma.3 <- 2
sigma.4 <- 2

model1 <- lm(y~X[,2])
model2 <- lm(y~X[,2:3])
model3 <- lm(y~X[,2:4])
model4 <- lm(y~X[,-1])
summary(model1) #biased beta and sigma^2

##
## Call:
## lm(formula = y ~ X[, 2])
##
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## Residuals:
## Min 1Q Median 3Q Max
## -9.3917 -3.6476 -0.0597 2.9386 10.8527
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.9488 0.6995 -2.786 0.00762 **
## X[, 2] -0.3526 0.8436 -0.418 0.67783
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.91 on 48 degrees of freedom
## Multiple R-squared: 0.003626, Adjusted R-squared: -0.01713
## F-statistic: 0.1747 on 1 and 48 DF, p-value: 0.6778

summary(model2) #unbiased beta, smaller standard errors, biased sigma^2

##
## Call:
## lm(formula = y ~ X[, 2:3])
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4020 -3.1885 -0.3253 2.0340 12.6776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7008 0.6514 -2.611 0.01207 *
## X[, 2:3]1 1.5485 0.9994 1.549 0.12800
## X[, 2:3]2 -2.8482 0.9373 -3.039 0.00387 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.536 on 47 degrees of freedom
## Multiple R-squared: 0.1672, Adjusted R-squared: 0.1318
## F-statistic: 4.719 on 2 and 47 DF, p-value: 0.01356
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summary(model3) #unbiased beta, even smaller standard errors, unbiased sigma^2

##
## Call:
## lm(formula = y ~ X[, 2:4])
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.551 -1.466 -0.099 1.160 4.324
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0291 0.3263 -3.153 0.00284 **
## X[, 2:4]1 1.4430 0.4935 2.924 0.00535 **
## X[, 2:4]2 -2.8739 0.4628 -6.210 1.40e-07 ***
## X[, 2:4]3 4.3099 0.3557 12.117 6.46e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.239 on 46 degrees of freedom
## Multiple R-squared: 0.8013, Adjusted R-squared: 0.7884
## F-statistic: 61.84 on 3 and 46 DF, p-value: 3.562e-16

summary(model4) #unbiased beta, larger standard error, unbiased sigma^2

##
## Call:
## lm(formula = y ~ X[, -1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.304 -1.328 -0.107 1.419 3.830
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9887 0.3319 -2.979 0.00465 **
## X[, -1]1 1.9504 0.8225 2.371 0.02207 *
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## X[, -1]2 -2.3006 0.8753 -2.629 0.01169 *
## X[, -1]3 3.8147 0.7335 5.201 4.7e-06 ***
## X[, -1]4 -1.2473 1.6136 -0.773 0.44357
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.249 on 45 degrees of freedom
## Multiple R-squared: 0.8039, Adjusted R-squared: 0.7865
## F-statistic: 46.13 on 4 and 45 DF, p-value: 2.291e-15

### The "true biased" variance###
# These matrices are what the estimator thinks the variance conditional on X
# will be given that you've misspecified the model.
# They are biased because the model is not conditioning on the
# X that are left in the error term, which biases the estimate of sigma^2
V1.hat <- sigma.1^2 * solve(t(X[,1:2]) %*% X[,1:2])
V2.hat <- sigma.2^2 * solve(t(X[,1:3]) %*% X[,1:3])
V3.hat <- sigma.3^2 * solve(t(X[,1:4]) %*% X[,1:4])
V4.hat <- sigma.4^2 * solve(t(X) %*% X)

#semi pd: add "irrelevant" (hat sigma unchanged, R^2_j increased)
round(eigen(V4.hat-rbind(cbind(V3.hat,0),0), only.values = TRUE)$value,7)

## [1] 3.160439 0.000000 0.000000 0.000000 0.000000

#not clear; we've added a "relevant variable" (hat sigma decreased, R^2_j increased)
round(eigen(V3.hat-rbind(cbind(V2.hat,0),0), only.values = TRUE)$value,7)

## [1] 0.1014938 -0.2428657 -0.3553703 -1.1897005

#not clear; we've added a "relevant variable" (hat sigma decreased, R^2_j increased)
round(eigen(V2.hat-rbind(cbind(V1.hat,0),0), only.values = TRUE)$value,7)

## [1] 1.1713685 -0.1574934 -0.2214032

## True variance conditional on X ##
V1 <- sigma2 * solve(t(X[,1:2]) %*% X[,1:2])
V2 <- sigma2 * solve(t(X[,1:3]) %*% X[,1:3])
V3 <- sigma2 * solve(t(X[,1:4]) %*% X[,1:4])
V4 <- sigma2 * solve(t(X) %*% X)
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#These will all be positive semi-definite
round(eigen(V4-rbind(cbind(V3,0),0), only.values = TRUE)$value,7)

## [1] 3.160439 0.000000 0.000000 0.000000 0.000000

round(eigen(V3-rbind(cbind(V2,0),0), only.values = TRUE)$value,7)

## [1] 0.1034267 0.0000000 0.0000000 0.0000000

round(eigen(V2-rbind(cbind(V1,0),0), only.values = TRUE)$value,7)

## [1] 0.2481757 0.0000000 0.0000000

MCout <- matrix(0, 1000,2)
for(i in 1:1000){

eps <- rnorm(N, sd=sqrt(sigma2))
y <- X %*% beta + eps
MCout[i,] <- lm(y~X[,2])$coef

}
var(MCout)

## [,1] [,2]
## [1,] 0.07796720 -0.01481009
## [2,] -0.01481009 0.12155042

V1

## [,1] [,2]
## [1,] 0.08119161 -0.01186295
## [2,] -0.01186295 0.11810009

V1.hat

## [,1] [,2]
## [1,] 0.58863919 -0.08600639
## [2,] -0.08600639 0.85622562

vcov(model1)

## (Intercept) X[, 2]
## (Intercept) 0.48926093 -0.07148618
## X[, 2] -0.07148618 0.71167151
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5.4 Heteroskedasticity and Normality assumptions

So far we’ve used the homoskedasticity and normality assumptions more often than not.
However, we would like to be able to know how good of an assumption these are in any given
situation.

5.4.1 Tests for heteroskedasticity

There are both heuristic and formal diagnostics for heteroskedasticity. One of the easier
approaches involve looking at plots of squared residuals. Specifically, we can start by just
looking at plots of each covariate against the squared residuals. Under homoskedasticity,
these should be flat-ish lines.

library(readstata13)
library(lmtest) #for bptest and coeftest
library(stargazer)
library(sandwich)
library(moments)

presdata <- read.dta13("Rcode/datasets/presvote.dta")
presdata$IncShare[33:34] <- c(0.4631,0.5196 )
model3 <- lm(IncShare~App+Growth+Inflation, data=presdata, x=T)
resid.sq <- model3$residuals^2
X <- model3$x #avoids any concerns about NAs

#Visually inspect for relationships between X and variance
par(mfrow=c(1,3))
plot(X[,"App"]~resid.sq)
plot(X[,"Growth"]~resid.sq)
plot(X[,"Inflation"]~resid.sq)
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There is also a built in diagnostic plot for lm objects. The plot function applied to an lm
object produces 6 diagnostic plot and presents 4 of them; the third relates to homoskedasticity.
Under homoskedasticity this line should be flat.

par(mfrow=c(1,1))
plot(model3, which=3)
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So
we can start to see a little more clearly now that there may be some bouncing around here,
but enough? Are these slopes distinguishable from zero? While visuals are helpful, a formal
test can give us a more clear answer sometimes.

The Breusch-Pagan test provides a framework for testing The hypothesis test

H0 : E[ε2
i |xi] = σ2,∀i

HA : E[ε2
i |xi] = σ2

ε + γ′zi.

Note that this involves testing a specific functional form assumption on z. The test is
implemented using a regression of ε̂2

i on zi with a constant and then conducting an omnibus
test. This test is either the F test we used last time or NR2 asy∼ χ2

P where P is the length of
zi (excluding the constant). Why does an omnibus test tell us what we want to know?

The White test is a specific version of this test that uses xi, x2
i1, . . . , x2

im, {xikxi`}mk=2,`>k

That is all two way multiplications within xi including with itself.

###### Hypothesis testing #####
## H0: E[e^2_i|X] = sigma^2_e for all i
## HA: E[e^2_i|X] = sigma^2_e + \gamma'z_i for some i
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# This is a test of if all \gamma=0: An omnibus test on
# e^2 ~ sigma^2_e + \gamma'z_i
# We don't have e, so we use hat(e)

#bptest is in the lmtest package
bptest(model3) # equivalent to varformula = ~App+Growth+Inflation

##
## studentized Breusch-Pagan test
##
## data: model3
## BP = 3.1902, df = 3, p-value = 0.3632

bptest(model3, #Using the White specification
varformula = ~poly(App,Growth,Inflation,degree=2, raw=TRUE),
data=presdata)

##
## studentized Breusch-Pagan test
##
## data: model3
## BP = 12.717, df = 9, p-value = 0.1758

# This is equiv to
# ~App+Growth+Inflation+
# I(App^2)+I(Growth^2) + I(Inflation^2)+
# App:Growth + App:Inflation+
# Growth:Inflation

#white test by hand
model3.white <- lm(I(model3$residuals^2)~poly(App,Growth,Inflation,degree=2, raw=TRUE),

data=model3$model)
summary(model3.white)

##
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## Call:
## lm(formula = I(model3$residuals^2) ~ poly(App, Growth, Inflation,
## degree = 2, raw = TRUE), data = model3$model)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.086e-03 -3.835e-04 1.090e-06 4.032e-04 1.005e-03
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -6.527e-03 5.833e-03
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.0.0 1.967e-04 2.121e-04
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)2.0.0 -1.100e-06 1.807e-06
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.1.0 1.814e-04 1.292e-03
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.1.0 -1.499e-05 1.298e-05
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.2.0 1.357e-04 8.204e-05
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.0.1 1.900e-03 1.696e-03
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.0.1 -3.320e-05 3.033e-05
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.1.1 4.709e-05 6.674e-05
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.0.2 -6.119e-05 5.092e-05
## t value Pr(>|t|)
## (Intercept) -1.119 0.292
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.0.0 0.927 0.378
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)2.0.0 -0.609 0.558
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.1.0 0.140 0.891
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.1.0 -1.154 0.278
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.2.0 1.654 0.133
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.0.1 1.120 0.292
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)1.0.1 -1.095 0.302
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.1.1 0.706 0.498
## poly(App, Growth, Inflation, degree = 2, raw = TRUE)0.0.2 -1.202 0.260
##
## Residual standard error: 0.0008139 on 9 degrees of freedom
## Multiple R-squared: 0.6693, Adjusted R-squared: 0.3386
## F-statistic: 2.024 on 9 and 9 DF, p-value: 0.1542
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white <- 19*summary(model3.white)$r.sq
white

## [1] 12.71691

df <- length(model3.white$coef)-1
pchisq(white, df=df, lower=F)

## [1] 0.1758398

We do not reject the null of homoskedasticity is good for us, because this is a small sample.
We would be in trouble if we had found stronger evidence of heteroskedasticity because with
only 19 observations it would be a reach to appeal to asymptotic results. We would have to
change the model in some way to remove the heteroskedasticity.

#### Another Application
shady <- read.dta13("Rcode/datasets/shady.dta")
print(cbind(colnames(shady), attributes(shady)$var.labels))

## [,1] [,2]
## [1,] "obs" "observation number"
## [2,] "aircon" "air conditioning"
## [3,] "asprice" "assessed price of home"
## [4,] "bedroom" "number of bedrooms"
## [5,] "cond" "condition of home"
## [6,] "fireplc" "fireplace"
## [7,] "fullbth" "number of full bathrooms"
## [8,] "grade" "grade of home"
## [9,] "halfbth" "number of half bathrooms"
## [10,] "htype" "dwelling type"
## [11,] "live_fsq" "heated square feet"
## [12,] "live_usq" "unheated square feet"
## [13,] "owncode" "owner code"
## [14,] "salepric" "sale price of home"
## [15,] "saleyr" "sale year"
## [16,] "totroom" "total number of rooms"
## [17,] "yearblt" "year home was built"
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shady$salepric <- shady$salepric/1000000
shady$asprice <- shady$asprice/1000000
model1 <- lm(asprice~salepric,data=shady)

#visual
plot(model1, which=3)
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#White test
bptest(model1, varformula = ~salepric +I(salepric^2),

data=shady)

##
## studentized Breusch-Pagan test
##
## data: model1
## BP = 438.51, df = 2, p-value < 2.2e-16

summary(lm(I(model1$residuals^2)~salepric +I(salepric^2), data=model1$model))

##
## Call:
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## lm(formula = I(model1$residuals^2) ~ salepric + I(salepric^2),
## data = model1$model)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.052276 -0.001624 -0.000291 0.000680 0.134556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0048370 0.0004887 9.898 <2e-16 ***
## salepric -0.0707760 0.0050474 -14.022 <2e-16 ***
## I(salepric^2) 0.2310972 0.0104118 22.196 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007012 on 1094 degrees of freedom
## Multiple R-squared: 0.3997, Adjusted R-squared: 0.3986
## F-statistic: 364.3 on 2 and 1094 DF, p-value: < 2.2e-16

5.4.2 Tests for normality

Before considering the efficiency gains, we want to know if worth mentioning here is that we
also have tests for the normality of an error term. These tests are all based on the distribution
of the residuals. Some informal diagnostics include looking at a QQ plot. Let’s start with
that.

A QQ plot compares the empirical quantiles of a sample to the theoretical quantiles of a
given distribution. For example, with the standard normal we know that 2.5% of observations
should be below -1.96, half should be below 0, and 97.5% should be below 1.96.
The QQ plot sees how well a set of observations matches a set of expectations.

X <- rnorm(1000)
par(mfrow=c(3,1))
qqnorm(X)
qqline(X)
qqplot(qt(seq(0,1,length=1000),df=5),X, main=expression(t[5]~"QQ plot"))
qqline(X, distribution =function(p){qt(p, df = 5)})
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plot(model1, which=2)
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The QQ plot of the residuals is iffy. The middle part looks fine, but are the end points bad
enough to rule out normality? To be more certain we may want to consider an hypothesis
test. Specifically the Jarque-Bera test is one such test we can consider. The JB test is based
on the fact that under the null hypothesis the residuals will have a skew of 0 and kurtosis of
3 (which is true of any normal distribution). This is a test of if the 3rd and 4th empirical
moments of the residuals match the normal’s theoretical moments. The test statistic is based
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on the sample skewness:

S = E[(ε− E[ε])3]
E[(ε− E[ε])2]3/2 =

1
N

∑N
i=1 ε̂

3
i(

1
N

∑N
i=1 ε̂

2
i

)3/2

and the sample kurtosis

K = E[(ε− E[ε])4]
E[(ε− E[ε])2]2 =

1
N

∑N
i=1 ε̂

4
i(

1
N

∑N
i=1 ε̂

2
i

)2 .

The JB test combines these into

JB = N
(1

6S
2 + 1

24(K − 3)2
)
∼ χ2

2.

The down side of the JB test is that it can only tell you if these two moment conditions fail.
It can’t distinguish between the normal and other distributions with skew 0 and kurtosis 3.

Alternative non-parametric tests include the Shapiro-Wilk and the Kolmogorov-Smirnov tests.
Let’s see how these do with the Shadyside data.

# JB test (implemented)
jarque.test(model1$residuals)

##
## Jarque-Bera Normality Test
##
## data: model1$residuals
## JB = 19141, p-value < 2.2e-16
## alternative hypothesis: greater

# Does it do what we think it should?
N <- length(model1$residuals)
S <- mean(model1$residuals^3)/mean(model1$residuals^2)^(3/2)
K <- mean(model1$residuals^4)/mean(model1$residuals^2)^(2)
c(skewness(model1$residuals), S)

## [1] -0.04268419 -0.04268419

c(kurtosis(model1$residuals), K)

## [1] 23.46344 23.46344
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JB <- N*(S^2/6 + (K-3)^2/24)
JB

## [1] 19140.82

pchisq(JB, lower=FALSE, df=2)

## [1] 0

# Non parametric tests: you should probably stick with these, even
# if they're trickier to understand. They are more powerful tests
# Remember that power means the probability of *not* making a type II error
# Or the probability of not finding a false negative (we don't reject a false)

shapiro.test(model1$residuals) #just for normality

##
## Shapiro-Wilk normality test
##
## data: model1$residuals
## W = 0.81088, p-value < 2.2e-16

ks.test(scale(model1$residuals), "pnorm") #can compare to any distribution; here we use

## Warning in ks.test(scale(model1$residuals), "pnorm"): ties should not be present
## for the Kolmogorov-Smirnov test

##
## One-sample Kolmogorov-Smirnov test
##
## data: scale(model1$residuals)
## D = 0.14839, p-value < 2.2e-16
## alternative hypothesis: two-sided

# a standard normal.
# NOTE: scale(x) standardizes x
# (x-mean(x))/sd(x)
# if the residuals are normal
# then scale(residuals) should be standard
# normal.
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Here, we reject the null hypothesis of normality. This limits us to asymptotic test results and
undercuts some of the efficiency results we have.

Going back to the presidential vote data, we can see

shapiro.test(model3$residuals) #just for normality

##
## Shapiro-Wilk normality test
##
## data: model3$residuals
## W = 0.96789, p-value = 0.7337

ks.test(scale(model3$residuals), "pnorm") #can compare to any distribution;

##
## One-sample Kolmogorov-Smirnov test
##
## data: scale(model3$residuals)
## D = 0.099682, p-value = 0.9817
## alternative hypothesis: two-sided

In this case we do not reject the null of normality in any situation. Again this is good,
because we have a very small number of observations. If we had rejected normality here,
we’d have to make a very weak appeal to large sample properties to test hypotheses.

So what’s next? Robust standard errors are great for large N because they don’t require you
to assume homoskedasticity ε. OLS with robust standard errors is still

1. Unbiased
2. Consistent
3. Asymptotically normal

But it’s not BLUE! Lower variance unbiased and consistent estimators exist. Furthermore, the
test statistics we derived for various hypothesis tests no longer have known finite distributions
(we used homoskedasticity and normality for all our finite sample tests). We also lose
asymptotic efficiency even if the errors are normal (OLS is no longer the MLE). We can gain
more efficient estimates by modeling the error terms using whats called Generalized Least
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Squares (GLS). In short it works by setting

yi ∼ N(β′xi, σ2
εi

)

σ2
εi

= h(γ′zi)

where h : R → R+, say eγ
′zi , and then estimating β, γ (usually by MLE). In theory you

have the skills now to do this, but the efficiency gains are often minimal and are frequently
questionable. If you have a good reason to use GLS, you can read on. But in the interest of
teaching you things you might use, we will skip this for now.

5.4.3 Modeling with GLS

Robust standard errors are great for large N becauase they don’t require you to assume
either homoskedasticity or normality of ε. However, they can be inefficient in the sense that
they don’t use all the information on the table. This inefficiency can be particularly true if ε
is normal but heteroskedastic. We can gain more efficient estimates by modeling the error
terms.

Let’s being with the assumption that the heteroskedasticity takes the form

Var(ε) =


σ2
ε1 0 . . . 0
0 σ2

ε2 . . . 0
... . . .

. . . ...
0 0 0 σ2

εN

 = σ2
ε


ω1 0 . . . 0
0 ω2 . . . 0
... . . .

. . . ...
0 0 0 ωN

 = σ2
εΩ.

This format allows us to normalize Ω such that trace(Ω) = ∑N
i=1 ωi = N . This normalization

can always be found by setting σ2
ε = trace(Var(ε))/N . In other words σ2

ε as the common
variance and the ωs reflect disturbances from this homoskedastic world. When ω = 1, we
have homoskedasticity.

We will now expand on our OLS framework by creating the generalized least squares
estimator

β̂GLS = (X ′Ω−1X)−1X ′Ω−1y = β + (X ′Ω−1X)−1X ′Ω−1ε.

Note that this looks a lot like the OLS

β̂OLS = (X ′X)−1X ′y = β + (X ′X)−1X ′ε.
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Likewise the variances will look similar:

Var(β̂GLS|X) = (X ′Ω−1X)−1X ′Ω−1 Var(ε|X)Ω−1X(X ′Ω−1X)−1

= (X ′Ω−1X)−1X ′Ω−1σ2
εΩΩ−1X(X ′Ω−1X)−1

= σ2
ε(X ′Ω−1X)−1X ′Ω−1X(X ′Ω−1X)−1

= σ2
ε(X ′Ω−1X)−1

Var(β̂OLS|X) = (X ′X)−1X ′Var(ε|X)X(X ′X)−1

= σ2
ε(X ′X)−1X ′ΩX(X ′X)−1

Which of these is better? Let’s compare the variances.

Var(β̂OLS|X)− Var(β̂GLS|X) = σ2
ε(X ′X)−1X ′ΩX(X ′X)−1 − σ2

ε(X ′Ω−1X)−1

Let A = (X ′X)−1X ′ − (X ′Ω−1X)−1X ′Ω−1

Then σ2
εAΩA′ = σ2

ε(X ′X)−1X ′ΩX(X ′X)−1 − σ2
ε(X ′Ω−1X)−1.

So the difference between the two variances is a positive constant times a quadratic, wrapped
around a symmetric positive definite matrix. In other words, the differences between the
variance of the GLS and the OLS is symmetric and positive definite. The GLS is thus more
efficient than the OLS. However, it is not just the case that GLS is more efficient in this
setup, it is the most efficient among unbiased linear estimates–it is BLUE.

Let β̃ be another linear estimator Cy. It is unbiased so

E[β̃] = E[E[β̃|X]]

= E[E[Cy|X]]

= E[E[C(Xβ + ε)|X]]

= E[E[CXβ + Cε)|X]]

= E[E[CXβ|X] + C E[ε)|X]]

= CXβ = β

CX = I

and the variance is
Var(β̃|X) = Var(Cy|X)

= Var(CXβ + Cε|X)

= C Var(ε|X)C ′

= σ2
εCΩC ′
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Now let D = C − (X ′Ω−1X)−1X ′Ω−1. Note that

DX = CX − (X ′Ω−1X)−1X ′Ω−1X = I − I = 0,

and C = D + (X ′Ω−1X)−1X ′Ω−1. Now,

Var(β̃|X) = σ2
εCΩC ′

= σ2
ε

[
D + (X ′Ω−1X)−1X ′Ω−1

]
Ω
[
D + (X ′Ω−1X)−1X ′Ω−1

]′
= σ2

εDΩD′ + σ2
ε(X ′Ω−1X)−1 + σ2

εDX(X ′Ω−1X)−1 + σ2
ε(X ′Ω−1X)−1X ′D′

= σ2
εDΩD′ + σ2

ε(X ′Ω−1X)−1 + 0 + 0

= σ2
εDΩD′ + Var(β̂GLS|X)

This means that
Var(β̃|X)− Var(β̂GLS|X) = σ2

εDΩD.

Or, that the GLS is more efficient than any other LUE under this assumption.

Moving on, let’s also consider the MLE under this setup of Var(ε) = σ2
εΩ. Let’s add a

normality assumption back in, such that we assume that εi ∼ N(0, σ2
εi). Our likelihood

becomes
L(β|y,X) =

N∏
i=1

1
σεi
√

2π
e
− 1

2σ2
εi

(yi−β′xi)2

.

This is a mess, so let’s take the log-likelihood

L(β|y,X) =
N∑
i=1
− log(σεi)−

1
2 log(2π)− 1

2σ2
εi

(yi − β′xi)2.

The FOC is then
0 =

N∑
i=1

1
σ2
εi

(yi − β̂′MLExi)x′i

= 1
σ2
ε

X ′Ω−1(y −Xβ̂MLE)

β̂MLE = (X ′Ω−1X)−1(X ′Ω−1y)

So with normal errors and heteroskedasticity, the MLE is the GLS estimator. Good news!
This gives us two justifications for GLS if we suspect heteroskedasticity. It’s BLUE and the
asymptotically efficient. Bad news! This discussion has assumed we know Ω.
Most of the time this won’t be the case. What do we do then?
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5.4.4 Modeling Unknown heteroskedasticy

When we don’t know Ω, but we want to obtain efficient estimates we have to model the
heteroskedasticity. Specifically let E[ε2

i |xi] = h(zi, γ). Some common options for this include

h(zi, γ) = γ′zi Simple, but can be nonsense

= eγ
′zi Always positive so that’s nice

Assuming normal errors we can write a log-likelihood for this problem

L(β, γ|y,X) =
N∑
i=1
−1

2 log(2π)− 1
2 log(h(zi, γ))− 1

2h(zi, γ)−1(yi − β′xi)2.

The FOC for β and γ give us

DβL(β, γ|y,X) =
N∑
i=1

h(zi, γ)−1(yi − β′xi)x′i

DγL(β, γ|y,X) =
N∑
i=1
−1

2
Dγh(zi, γ)
h(zi, γ) + 1

2h(zi, γ)−2Dγh(zi, γ)(yi − β′xi)2

These need to be solved simultaneously, but sadly they do not admit a closed for solution.
We will need to solve these numerically using optim.

Alternatively, we could do this as a two-step. If we estimate γ first, then we can plug this γ̂
into the FOC for β. This FOC then has a closed form solution in terms of the feasible GLS
(FGLS) estimator:

β̂FGLS = argmin
β

h(zi; γ̂)−1(yi − β′xi)2 =
[

1
N

N∑
i=1

xix
′
i

h(zi; γ̂)

]−1 [ 1
N

N∑
i=1

xiyi
h(zi; γ̂)

]

or
β̂FGLS = (X̃ ′X̃)−1X̃ ′ỹ

where X̃ =
[
1/
√
h(z; γ̂) X1/

√
h(z; γ̂) . . . Xm/

√
h(z; γ̂)

]
and ỹ = y/

√
h(z; γ̂).

The consistency of this estimator follows from the properties of MLE. The asymptotic
variance can be found by constructing the information matrix (Inverse of the negative Hessian
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evaluated at truth)

D2
ββL(β, γ|y,X) = −

N∑
i=1

h(zi; γ)xix′i

D2
βγL(β, γ|y,X) = −

N∑
i=1

h(zi; γ)−2Dγh(zi; γ)(yi − β′xi)x′i

D2
γγL(β, γ|y,X) = Hγ Not interesting for us

What is interesting is that

E[−D2
βγL(β, γ|y,X)] = E

[
N∑
i=1

h(zi; γ)−2Dγh(zi; γ)(yi − β′xi)x′i
]

= E
[
N∑
i=1

h(zi; γ)−2Dγh(zi; γ)εx′i
]

= 0

As such the information matrix is block diagonal

I(β, γ) =
E[h(zi, γ)−1xix

′
i]−1 0

0 −E[Hγ]−1

 .
This block diagonal structure means that we haven’t lost any efficiency due to the fact that
we’ve estimated γ, which is unusual for two-step approaches. Notice that part of the matrix
that relates to β is the GLS variance with known variance such that

√
N(β̂MLE − β) d→

√
N(β̂GLS − β0),

or the MLE converges to the efficient GLS estimates. Wild.

The FGLS estimator can also be built without the nonlinear MLE model. Instead we can use
three OLS steps to get here:

1. Find β̂OLS and use this to form ε̂2
i (consistent)

2. Regress h−1(ε̂2
i ) on zi to get γ̂ (h−1 is log for the exponential model).

3. Find the FGLS estimates by weighting each observation by h(γ̂′zi)

Aside: there is subtle difference between the MLE and FGLS here, In MLE model we can set
h(γ′zi) = σ2

εωi, but in the GLS context this becomes h(γ′zi + ui) = σ2
εωi in order to fit the

auxiliary model. Further recall that σ2
ε and ωi are not separately identified. The weights we

get are estimates of ωi that match whatever the final homoskedastic variance term is from
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the final FGLS step (step 3), σ2
ε̃ . Because it emerges in the final FGLS step, σ2

ε̃ remains on
the right-hand side of the variance model (step 2).

Where does this take us:

h−1(σ2
ε̃ωi) = γ′zi + ui

log(σ2
ε̃ωi) = γ′zi + ui let h(·) = exp(·)

log(σ2
ε̃) + log(ωi) = γ′zi + ui Property of logs

log(ωi) = γ0 − log(σ2
ε̃)︸ ︷︷ ︸

constant in aux regression

+
M∑
j=1

γjzij + ui,

and √
σ2
ε̃ωi = γ′zi + ui let h(·) = (·)2

√
ωi =

(
γ

σε̃

)′
zi + ui

σε̃

As such the estimated variance of εi at point zi is:

̂E(ε2
i |X = xi) = h(γ̂′MLEzi) any h and MLE
̂E(ε2
i |X = xi) = σ̂2

ε̃ exp(γ̂′FGLSzi) h = exp and FGLS
̂E(ε2
i |X = xi) = σ̂2

ε̃ (γ̂′FGLSzi)
2

h(·) = (·)2 and FGLS,

where σ̂2
ε̃ is formed using the residuals of the final FGLS step (step 3), above.

However, the likelihood approach is often just as easy these days, and the multi-step FGLS is
rarely used as result. Like the MLE, this version of the FGLS is asymptotically efficient with
unknown variances even with the different steps.
Iterating this version of the FGLS will produce the MLE, but the properties are the same
with or without iteration.

Both of the above are methods to model the heteroskedasticity that emerges in the data.
However, they take some amount of work and require a functional form assumption on h.
What’s wrong with OLS? It’s unbiased and consistent. We lose some efficiency, but is that a
big deal? Recall that with heteroskedasticity the “classical” standard errors are incorrect,
but robust standard errors are asymptotically correct. Make life easy for yourself, if you find
heteroskedasticity and you have more than 50 observations use the OLS with robust standard
errors. If you have to deal with these issues in smaller samples, it’s best to collect more data.
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5.4.5 Application

set.seed(1)
library(readstata13)
library(lmtest)
library(sandwich)
library(stargazer)
shady <- read.dta13("Rcode/datasets/shady.dta")
shady$salepric <- shady$salepric/1000000
shady$asprice <- shady$asprice/1000000
model1 <- lm(asprice~salepric,data=shady)

Above we saw evidence to suggest that heteroskedasticity was present. We can use robust
standard errors or model it with GLS. Let’s start by comparing the robust to the classic
standard errors to see how much difference it makes

robust <- vcovHC(model1)
coeftest(model1)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0230640 0.0022344 10.322 < 2.2e-16 ***
## salepric 0.7857927 0.0128068 61.358 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(model1,vcov=robust)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0230640 0.0046988 4.9085 1.057e-06 ***
## salepric 0.7857927 0.0381265 20.6101 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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These are some pretty big differences here differences. We can try using the different two
step approaches:

sigma2.i <- model1$residuals^2
model2.a <- lm(log(sigma2.i)~salepric, data=model1$model)
model2.b <- lm(asprice~salepric, data=model1$model,

weights = 1/exp(model2.a$fitted.values))
coeftest(model2.b)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0216608 0.0017367 12.472 < 2.2e-16 ***
## salepric 0.7957973 0.0154181 51.614 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not much changed here. We could iterate or we could directly get the MLE

#### MLE for FLGS
#write the log-likelihood (negative)
LL <- function(theta, y, X,Z,h){

## theta: guess of the parameters order (beta, gamma)
## y: dependent variable
## X: regressors associated with beta
## z: regressors associated with gamma
## h: function for transforming Z*gamma into sigma^2.

beta <- theta[1:ncol(X)]
gamma <- theta[(ncol(X)+1):length(theta)]
sigma2 <-h(Z=Z, gamma=gamma, grad=FALSE)

log.lik <- -log(sigma2)/2 - ((y-X%*%beta)^2/(2*sigma2))
log.lik <- sum(log.lik)
return(-log.lik)

}
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grad <- function(theta, y, X,Z,h){
## theta: guess of the parameters order (beta, gamma)
## y: dependent variable
## X: regressors associated with beta
## z: regressors associated with gamma
## h: function for transforming Z*gamma into sigma^2.
## If grad=TRUE, h also returns the first derivative of h wrt to gamma

beta <- theta[1:ncol(X)]
gamma <- theta[(ncol(X)+1):length(theta)]
hout <- h(Z=Z, gamma=gamma, grad=TRUE)
sigma2 <- hout[[1]]
mu <- drop(X%*%beta)
Dh <- hout[[2]]

Dbeta <- ((y-mu)/sigma2)*X
Dgamma <- (Dh*((y-mu)^2)/(2*sigma2^2) - Dh/(2*sigma2))
return(-colSums(cbind(Dbeta, Dgamma)))

}

## Build the data
X <- as.matrix(cbind(1, model1$model$salepric))
Z <- X
y <- model1$model$asprice
h <- function(Z, gamma, grad=FALSE){

output <- exp(drop(Z%*%gamma))
if(grad==TRUE){

output <- list(output,
Z*exp(drop(Z%*%gamma)))

}
return(output)

}

set.seed(1)
theta0 <- runif(4)
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## minimize the negative loglikelihood
MLE.exp <- optim(theta0, fn = LL,

gr=grad,
y=y, X=X,Z=Z,h=h,
method="BFGS", hessian=TRUE)

theta.hat.exp <- MLE.exp$par
theta.se.exp <- sqrt(diag(solve(MLE.exp$hessian)))

# individually test that true parameters are 0
t.exp <- theta.hat.exp/theta.se.exp
p.exp <- 2*pnorm(abs(t.exp), lower.tail = F)
print(cbind(theta.hat.exp, theta.se.exp, t.exp, p.exp))

## theta.hat.exp theta.se.exp t.exp p.exp
## [1,] 0.0214343 0.001776764 12.06367 1.642943e-33
## [2,] 0.7981652 0.014218521 56.13560 0.000000e+00
## [3,] -7.3629853 0.063503117 -115.94683 0.000000e+00
## [4,] 5.2350995 0.333943699 15.67659 2.186725e-55

#try another functional form
h <- function(Z, gamma, grad=FALSE){

output <- (drop(Z%*%gamma)^2)
if(grad==TRUE){

output <- list(output,
2*drop(Z%*%gamma)*Z)

}
return(output)

}
MLE.sq <- optim(theta0, fn = LL,

y=y, X=X,Z=Z,h=h,
gr=grad,
method="BFGS", hessian=TRUE)

theta.hat.sq <- MLE.sq$par
theta.se.sq <- sqrt(diag(solve(MLE.sq$hessian)))
t.sq <- theta.hat.sq/theta.se.sq
p.sq <- 2*pnorm(abs(t.sq), lower.tail = F)
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print(cbind(theta.hat.sq, theta.se.sq, t.sq, p.sq))

## theta.hat.sq theta.se.sq t.sq p.sq
## [1,] 0.02187353 0.0017755401 12.31937 7.125169e-35
## [2,] 0.79440084 0.0138985185 57.15723 0.000000e+00
## [3,] 0.02438908 0.0009473996 25.74319 3.842623e-146
## [4,] 0.09947869 0.0070059502 14.19917 9.270227e-46

The estimates of β are roughly unchanged.
All of the FGLS methods produce smaller standard errors than the Huber-White estimator,
but we used the normal likelihood for the MLE version. The sandwich estimator doesn’t
need normal error terms. However, the substantive conclusions are unchanged.

names(theta.hat.exp) <- names(theta.hat.sq) <-
names(theta.se.exp) <- names(theta.se.sq) <- names(model1$coef)

#for write ups
stargazer(model1, model1, model2.b,

model1, model1, #What is this?
coef=list(NULL, NULL, NULL, theta.hat.exp, theta.hat.sq),
column.labels = c("OLS", "OLS-robust", "FGLS-LS",

"FGLS-MLE (exp)", "FGLS-MLE (sq)"),
dep.var.labels = "Apraisal price",
covariate.labels = "Sale price",
keep.stat = "n", #Don't report stats when using "dummy" models
header=FALSE,
digits=2,
se=list(NULL,sqrt(diag(robust)), NULL, theta.se.exp, theta.se.sq))

What have gained here? Not much. The robust standard errors provide the most conservative
output, so it’s probably wise to stick with that. Almost no one uses the FGLS for just
heteroskedasticity, but the framework re-appears in other settings (time series, panel data).

5.4.6 Linear probability model

While we’re talking about normality and heteroskedasticity let’s consider the special case
where yi ∈ {0, 1} (i.e., an event did or didn’t happen). We will still impose Assumption B1
yi = β′xi + εi. This special case is called the linear probability model (LPM). The main thing
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Table 6

Dependent variable:
Apraisal price

OLS OLS-robust FGLS-LS FGLS-MLE (exp) FGLS-MLE (sq)
(1) (2) (3) (4) (5)

Sale price 0.79∗∗∗ 0.79∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.79∗∗∗
(0.01) (0.04) (0.02) (0.01) (0.01)

Constant 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗
(0.002) (0.005) (0.002) (0.002) (0.002)

Observations 1,097 1,097 1,097 1,097 1,097

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

to note here is that in order for y to be 0 or 1 it must be that

εi =

−β
′xi yi = 0

1− β′xi yi = 1
.

Further note that εi only takes on two values. Let pi be the probability that yi is 1 given xi,
then the expected value of εi is given by

E[εi|xi] = 0 = pi(1− β′xi) + (1− pi)(−β′xi)

0 = pi − β′xipi − β′xi + piβ
′xi

pi = β′xi = Pr(yi = 1|xi)

and variance
E[ε2

i |xi] = pi(1− β′xi)2 + (1− pi)(−β′xi)2

= β′xi(1− β′xi)

The constraints on the errors are very specific requirements that are unlikely to be met
in practice, but it does tell us that normality is gone and heteoskedasticity is built in by
construction. As such, we are firmly in the world of relying on large-sample properties and
robust standard errors are a must.

Note that based on the above we can say that yi is a Bernoulli outcome with E[yi|xi] =
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β′xi = Pr(yi|xi). The OLS estimator still gives us the basic results that

E[β̂|X] = β + (X ′X)−1X ′ E[ε|X] = β.

As such, we still have unbiasedness (you can conduct a similar exercise for consistency). The
marginal effects are similar: On average, a one [unit of xk] increase in xk is associated with a
β̂k increase in the probability that y = 1, holding all other independent variables constant.

Note however, that when β̂′xi is outside the unit interval (which can happen) we have an
estimate for pi = Pr(yi|xi) that is nonsense. Others have shown that when this happens it
implies a misspecification in the LPM leading to biased and inconsistent estimates. These
nonsense results (and the inconsistency they imply) leads to alternatives like logit and probit
regression (more on this next semester).

However, even with nonsense probabilities, the bias in β doesn’t appear to be too bad in
practice, and so you should think carefully about whether you want to give up the linear
model. And, the LPM does have some advantages over these nonlinear alternatives. In more
complicated panel or instrumental variables settings the LPM can make your life a lot easier
(both of which we’ll cover if there’s more time).

5.5 Outliers and multicolinearity

Two other issues we’re going to consider are outliers and multicolinearity. Consider the
following four data sets

par(mfrow=c(2,2))
plot(y1~x1, data=anscombe, ylim=c(3,13), xlim=c(3,20))
abline(reg=lm(y1~x1,data=anscombe))
plot(y2~x2, data=anscombe, ylim=c(3,13), xlim=c(3,20))
abline(reg=lm(y2~x2,data=anscombe))
plot(y3~x3, data=anscombe, ylim=c(3,13), xlim=c(3,20))
abline(reg=lm(y3~x3,data=anscombe))
plot(y4~x4, data=anscombe, ylim=c(3,13), xlim=c(3,20))
abline(reg=lm(y4~x4,data=anscombe))
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These four examples are called “Anscombe’s Quartet”. All X ′s have the same mean and
variance, all the y’s have the same mean and variance, all the pairings have the same
covariance, correlation, and regression parameters.

round(colMeans(anscombe),2)

## x1 x2 x3 x4 y1 y2 y3 y4
## 9.0 9.0 9.0 9.0 7.5 7.5 7.5 7.5

round(apply(anscombe, 2, var),2)

## x1 x2 x3 x4 y1 y2 y3 y4
## 11.00 11.00 11.00 11.00 4.13 4.13 4.12 4.12

with(anscombe,cor(x1,y2))

## [1] 0.8162365

with(anscombe,cor(x2,y2))

## [1] 0.8162365

with(anscombe,cor(x2,y2))

## [1] 0.8162365
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with(anscombe,cor(x2,y2))

## [1] 0.8162365

However, what should be clear here is that only the the first one really looks like an appropriate
use of the linear model. The second one looks like it has a clear bend that should be accounted
for, the bottom two have clearly influential points that “pull” the line towards themselves.
The fourth one is straight up misleading. Graphing data like this provides clear insight into
the problems of influence and is usually a good place to start with data analysis. Of course
this gets less informative with more covariates.

Because these cases get less clear in real life we can consider some tools for diagnosing
influential points and outliers. To do this we’re going to want to rescale the residuals (the
gap between point and line) to be on a standardized measure. What tool do we have for
that? We can z transform them. To do this we need to calculate the variance of each residual
(note that this is different than estimation of σ2

ε), here we finding each residual’s individual
standard error rather than estimating the distribution they’re drawn from. Recall that M is
the residual maker matrix and is idempotent and symmetric.

Var(ε̂|X) = Var(My|X)

= M Var(y)M

Under homoskedasticity and independence we get

Var(ε̂|X) = σ2
εM

= σ2
ε(I −X(X ′X)−1X ′)

Let H = X(X ′X)−1X ′ this is often called the hat matrix (or the projection matrix),
because it puts a hat on y Hy = ŷ. Measures of influence are frequently based on the diagonal
elements of H or M . Let h be the diagonal elements of H, then hi is called the “leverage” of
observation i (sometimes leverage is defined as hi/(1− hi).

We can then standardize the residuals such that

ε̃i = ε̂i

σ̂ε
√

(1− hi)
.

If we assume that the error term is normally distributed then ε̃i will be distributed t with
N −K degrees of freedom. Under homoskedasticity and normality, absolute values greater
than 3 would be considered unlikely. Hard to say about other conditions, but look for long
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tails. For example

r.standard <- rstandard(model1)
hist(r.standard,

main="Standardized residuals")
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head(sort(abs(r.standard), decreasing = TRUE))

## 445 290 9 944 151 406
## 9.989009 9.121431 7.145148 6.135457 5.611967 5.479210

Note that these cut points are sensitive to the assumptions of normality and homoskedasticity
(both of which we rejected in this data). However, they do still flag some observations to
look at. Another measure of influence is called “Cook’s distance.” Like the standardized
residuals uses the diagonals from the hat matrix to capture the influence of a point. The
Cook’s distance is given as

Di = ε̂2
ihi

Kσ̂2
ε(1− hi)2 .

This works out to be a scaled measure of how much the model predictions for all the remaining
points would change if we dropped i. The basic “rule of thumb” here is that any observation
with a distance greater than 1 should be investigated. however, this rule of thumb also relies
on the distributional assumptions.
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par(mfrow=c(2,2))
plot(model1, which=3:6, id.n=5)
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# 3 same plot we used to look at heteroskedasticity
# 4-6 are outlier/leverage specific (different ways to look)
which(cooks.distance(model1) > 1)
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## 290 445
## 290 445

head(sort(hatvalues(model1), decreasing=T))

## 290 289 365 944 445 142
## 0.04409478 0.02680814 0.02322143 0.02273828 0.02145893 0.01230014

Basically, these are telling us to consider observations 290 and 445 to make sure they aren’t
too weird/influential.

par(mfrow=c(1,1))
plot(asprice~salepric, data=shady)
points(asprice~salepric, data=shady[c(290,445),], col="red", pch=4,lwd=2)
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model1.not290 <- lm(asprice~salepric,data=shady[-c(290),])
model1.not445 <- lm(asprice~salepric,data=shady[-c(445),])
model1.neither <- lm(asprice~salepric,data=shady[-c(290,445),])
mod.list <- list(model1, model1.not290, model1.not445, model1.neither)
se.list <- lapply(mod.list,

function(x){sqrt(diag(vcovHC(x)))})
stargazer(mod.list,

dep.var.labels = "Apraisal price",
covariate.labels = "Sale price",

203



# type="text",
se=se.list,
title="Checking for outliers",
column.labels = c("Full sample", "Drop 290",

"Drop 445", "Drop Both"),
label="tab:outliers",
header = FALSE,
keep.stat = c("n"))

Table 7: Checking for outliers

Dependent variable:
Apraisal price

Full sample Drop 290 Drop 445 Drop Both
(1) (2) (3) (4)

Sale price 0.786∗∗∗ 0.811∗∗∗ 0.767∗∗∗ 0.792∗∗∗
(0.038) (0.030) (0.033) (0.024)

Constant 0.023∗∗∗ 0.020∗∗∗ 0.025∗∗∗ 0.022∗∗∗
(0.005) (0.004) (0.004) (0.003)

Observations 1,097 1,096 1,096 1,095

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The differences are pretty minor, so we’ll proceed with the full sample.

When you hear people talk about colinerity they are concerned about the full rank of X ′X.
Perfect multicolinearity occurs when one variable is a perfect linear combination of one or
more of the other independent variables (including the constant). For example, if you have
a variable that is years of education, another that is years of military service, and a third
that is candidate quality that is the sum of military service and education, then that would
be perfectly colinear and X ′X would be non-invertable. Likewise if you included a variable
for whether a candidate was male and your sample happened to only be a set of elections
with only male candidates, then this variable perfectly correlates with with the constant and
X ′X is not full rank (and thus non-invertable). If X ′X inverts then you don’t have perfect
multicolinearity.

In cases of less than perfect multicolinearity it is the case that some of the independent
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variables are highly correlated with each other (but not at ±1). These high correlations
can make it difficult for the model to suss out which variable is having what effect on y.
As such the estimates may become sensitive to small changes in the data, there may be
ridiculously large standard errors, weird signs, etc. This is usually a problem of having too
few observations, so the first thing to do is to try and collect more data. Some people will tell
you to check things like the variable inflation factor (VIF) as a diagnostic and make changes
if the VIF is greater than 10. The VIF is given as

VIF(Xj) = 1
1−R2

j

and Var(β̂j|X) = VIF(Xj)
σ2
ε∑N

i=1(xij − x̄j)2 .

Getting worried about the VIF is generally not great advice, however. Don’t bother checking
for colinearity unless someone tells you (reviewer, adviser, etc). If

1. (X ′X)−1 exists,
2. You have no theoretical reason to suspect colinearity,
3. None of the estimates or standard errors look like you tried to divide by zero,

Then you should be okay. Alternatively, if you have two or more variables that are so highly
related that you think they’re causing problems you can try combining them using something
like an average, or a minimum, or some kind of factor analysis.

library(car)
library(readstata13)
rm(list=ls())
## car package has a VIF function (but don't do this)
presdata <- read.dta13("Rcode/datasets/presvote.dta")

presdata$IncShare[33:34] <- c(0.4631,0.5196 )
presdata$IncShare <- presdata$IncShare*100
votemodel <- lm(IncShare~App+Growth+Inflation, data=presdata, x=T)
vif(votemodel)

## App Growth Inflation
## 1.093159 1.050508 1.134004

which(cooks.distance(votemodel)>1) #nothing flagged

## named integer(0)
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5.6 Functional form changes

Now we’re going to assess the “linear” part of linear regression. Assumption B1 is that y is a
linear function of Xs. However, we know many situations where a curve or discontinuity or
other oddity may be more appropriate. Fear not however, as the linear part of our assumption
refers to “linear in the parameters.” This means that, as appropriate, we can tweak our
variables in order to get nonlinear outputs within the linear framework by using creative
transformations of the data.

Sometimes these changes are justified as a “correction” for non-normality or heteroskedasticity,
but take care there. For one thing, these “problems” don’t affect the bias or consistency, so
don’t induce new complications to “fix” them. We should do use transformations when we
have theoretical reasons for suspecting a nonlinear relationship and/or we think it’s the right
way to answer our question.

5.6.1 Logs

One of the most common (and useful) transformations is the log transformation. There are
four possible models to consider here

yi = β0 + β1x1i + β2x2i + εi linear-linear model

yi = β0 + β1 log(x1i) + β2 log(x2i) + εi linear-log model

log(yi) = β0 + β1x1i + β2x2i + εi log-linear model

log(yi) = β0 + β1 log(x1i) + β2 log(x2i) + εi log-log model

All of these models are linear models in the sense of “linear in the parameters.” However, the
interpretations change as a result of these different functional forms.

Linear-linear Here we have our basic interpretation: “On average, a one [unit of X1] increase
in X1 is associated with a β̂1 [unit of y] increase in y, holding X2 constant.”

Linear-log Here is where things start to get funky. Let’s start by taking the derivative wrt
to X1 on both sides. We’ll switch to partial notation for this

∂yi
∂x1i

= 1
x1i

β1

β1 = ∂yi
∂x1i/x1i
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Notice that ∂x1i/x1i is a change in X1 over X1, this is the formula for percentage change
(for small changes). Recall that percent change is often framed as

%Increase = a1 − a0

a0
× 100.

Using a bit of linear extrapolation, we can say that the rate of change reflected in β1 is
in terms of how many more y’s per a 1 percentage increase in X1.

β1/100 = ∂yi
100× ∂x1i/x1i

Our becomes interpretation: “On average, a one percent increase in X1 is associated
with a β̂1/100 [unit of y] increase in y, holding X2 constant.”

Log-linear Starting from the same point we’ll take the derivative

log(yi) = β0 + β1x1i + β2x2i + εi

yi = exp(β0 + β1x1i + β2x2i + εi)
∂yi
∂x1i

= β1 exp(β0 + β1x1i + β2x2i + εi)

= β1yi

∂yi/yi
∂x1i

= β1

100× ∂yi/yi
∂x1i

= β1 × 100.

Now what we see is that the percentage change is going on with y. Using the same line
extrapolation we reach the interpretation: “On average, a one [unit of X1] increase in
X1 is associated with a [β̂1 × 100] percent increase y, holding X2 constant.”
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Log-log Starting from the same point we’ll take the derivative

log(yi) = β0 + β1 log(x1i) + β2x2i + εi

yi = exp(β0 + β1 log(x1i) + β2x2i + εi)
∂yi
∂x1i

= 1
x1i

β1 exp(β0 + β1 log(x1i) + β2x2i + εi)

= β1
yi
x1i

∂yi/yi
∂x1i/x1i

= β1

100× ∂yi/yi
100× ∂x1i/x1i

= β1.

Now what we see is that the percentage change is going on with both sides. Using
the same line extrapolation we reach the interpretation: “On average, a one percent
increase in X1 is associated with a β̂1 percent increase y, holding X2 constant.”

When it comes to choosing between these different forms, The most important guide is what
you think makes sense between a linear effect (no increase or decrease in the effect of X on y)
and diminishing or increasing returns. For example, the effectiveness of money on vote share:
when the spending is at low levels, a $1000 increases might have a big impact, but when
spending is in the millions, another $1000 might have a tiny impact. Plotting your data can
help here (but this gets complicated with many X’s) You can compare log-log to log-linear
using R2, adjusted R2, AIC, and BIC. Likewise for linear-linear to linear-log. However, these
measures require the same dependent variable, so you can’t compare log-linear to linear-linear
with them. Later, we’ll decsribe a test that allows you to ask if y is normal versus log-normal.
Generally speaking, my best advice is read papers similar to yours, see what they do, plan
accordingly.

We’ll look at some other non-linearity approaches and then try some examples.

5.6.2 Polynomials

Another way to introduce nonlinearities and curves are polynomials. Polynomials are
incredibly flexible way to capture all sorts of bendy relationships. With enough polynomials
any complicated continuous function can be approximated arbitrarily well. However, most of
the time we’re interested in 1 or 2 bends (what theories really lead us to more than that?).
Imagine a regression that predicts domestic terrorist attacks as a function of how democratic
a state is. At the low end we have repressive North Korea style states which prevent any
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kind of organization and thus have a lower risk of domestic terrorism. At the high end we
have liberal, highly open societies. In these states there are many non-violent options for
political expression and so terrorism is less attractive for engineering real change. In the
middle however, are the anocracies. In these states, there is neither a effective political outlet
nor an inherently strong repressive regime. Here we might expect the most terrorist attacks.
The regression could then be:

Ai = β0 + β1xi + β2x
2
i + β′3zi + εi,

which is a quadratic function. This functional form puts a U or an upside-down U relationship
between X and y.

The marginal effects are, as always, based on the first derivative

DxiAi(x∗) = β1 + 2β2x
∗.

What’s new here is that the marginal effect is based on the value of X. If β2 is negative, then
we have a marginal effect that is decreasing (moving towards −∞ as X increases. When
the marginal effect is 0, we are at the value of X associated with the maximum (or minimum
if β2 > 0) number of expected attacks,

DxiAi = β1 + 2β2xi

0 = β1 + 2β2xi

xi = −β1

2β2
.

We can add more polynomials if we think the relationship is complicated, but this becomes
increasing hard to interpret (and increasingly suspect for outside readers). Standard errors
for marginal effects can be calculated as

Var(D̂xiAi|X) = Var(β̂1 + 2β̂2xi|X)

= Var(β̂1|X) + 4x2
i Var(β̂2|X) + 4xi Cov(β̂1, β̂2|X)

=
[
0 1 2xi 0 . . . 0

]
Var(β̂|X)

[
0 1 2xi 0 . . . 0

]′
se(D̂xiAi|X) =

√
Var(β̂1|X) + 4x2

i V̂ar(β̂2|X) + 4xi Cov(β̂1, β̂2|X)

Sometimes the maximum/minimum will be of interest. This is nonlinear function of two
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estimates so we will use the delta method to form a standard error of the maximum/minimum

avar
−β̂1

2β̂2

 =
Dβ

−β̂1

2β̂2

′ avar(β̂)
Dβ

−β̂1

2β̂2


Dβ
−β̂1

2β̂2
=
(
0,− 1

2β̂2
, β1

2β2
2

)

se

−β̂1

2β̂2
|X

 =
√(

0,− 1
2β̂2
, β1

2β2
2

)′
âvar(β̂)

(
0,− 1

2β̂2
, β1

2β2
2

)

Many times, it’ll be of interest to just plot the marginal effects with a 95% confidence interval
as a function of X.

5.6.3 Dummy variables

Our next attempt at introducing flexibility into the functional form is in the form of “dummy”
variables. Dummy variables take on only two possible values 0 and 1. In most samples,
gender will be coded as a dummy with 1 indicating female and 0 indicating male, although
this might change as we collect better data. Regions of the country (or the world) can be
coded as individual dummies: (Northeast, Midwest, South, West). When including a set
of one or more dummies it is important to always omit one category. For example, unless
your sample is very inclusive you will not be able to include both a Female and Male dummy
variable. The need to exclude a category results from the colinearity results we described
above. If the two variables Male and Female cover all individuals exclusively then we get
Femalei +Malei = 1, which is perfectly colinear with the constant term. With the regions we
would include three of the four regions and leave the fourth out. To recap any set of dummies
must have an excluded category.

This leave-one-out strategy effects the interpretation of the coefficient on the dummy. In the
case of a single dummy reflecting two categories this is average effect (or difference between)
of moving from a 0 (excluded category) into a 1 (included category). For gender β̂ captures
the average difference between Women and Men (holding all else constant). In the regions
case suppose we exclude the Midwest, then we have

1. β̂NE is the average difference between the NE and the MW
2. β̂S is the average difference between the S and the MW
3. β̂W is the average difference between the W and the MW

Note it doesn’t matter which one we exclude. The magnitudes will change but the relative
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differences will be intact. Consider the question of how to include age in a regression that
predicts turnout, we could do any of the following

1. Include age as a single, untransformed variable (linear, constant positive effect).
2. Include age as a single, logged variable (nonlinear, effect is always positive buy we may

suspect it levels out at some point age)
3. Include age and age squared (nonlinear, effect of age is positive then possibly negative)
4. Include age dummies for groups 18-24, 25-44, 45-64, 65+ (nonlinear, allows each group

to have their own average turnout rate)

5.6.4 Interactions

The last specification we’ll look at in this section is an “interaction model.” Here we are
interested in whether the effect of one of our independent variables is depends on another
independent variable. For example, the effect that migrant remittances have on a group’s
decision to engage in political violence. We might suspect that this relationship depends on
what kind of country the groups is in. In more democratic states, more financial resources
through remittances may lead to less violence as there are legitimate political institutions
available that are more effective with money. In less democratic states, there may not be
such legimitate outlets so violence increases with resources. We can test this hypothesis using
an interaction model where we multiply one variable by the other, such that

Ai = β0 + β1ri + β2di + β3ridi + β′4xi + εi.

Here, Ai is the number of violent incidents, ri the amount of remittances being sent to country
i, and di is a measure of democracy in country in i (maybe a dummy, maybe a scale).

The marginal effect of remittances then becomes

DriAi(d∗) = β1 + β3d
∗.

If β3 < 0 then the effect of remittances on violence is decreasing as democracy levels increase.
Likewise depending on the signs and magnitudes of these βs it might be that the marginal
effect is positive under some values of democracy and negative under others. Note that β1

here now reflects the effect of remittances when the democracy measure is 0. If democracy is
a dummy, this is the marginal effect of remittances within non-democracies.

When the interaction variable is a dummy we often present the marginal effects when the
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dummy is “active” (democracy) and “inactive” (non-democracy) along with a confidence
interval. When the the interaction variable takes on several or many values it is often a good
idea to plot the marginal effect of your main variable of interest at these different values of
the interaction. A confidence interval of the marginal effect, like in the polynomial case can
be found using the variance

Var
(
D̂riAi|d = d∗

)
= Var

(
β̂1 + β̂3d

∗|X
)

= Var
(
β̂1|X

)
+ (d∗)2 Var

(
β̂3|X

)
+ 2d∗Cov(β̂1, β̂3|X)

=
[
0 1 0 d∗ 0 . . . 0

]
Var(β̂|X)

[
0 1 0 d∗ 0 . . . 0

]′
As in the polynomials CI can be build using either the standard normal depending (large
sample) or the t (small sample, homoskedsastic, and normal errors).

5.6.5 Vuong’s Non-nested model test

Comparative model testing a great tool for choosing among competing specifications. We’ve
done some of these before in the context of nested models. In those cases we compared a
restricted model to an unrestricted model using a Wald test. With non-nested model testing
we want to kick that up a notch. Consider two linear models

yi = β′xi + εi

h(yi) = γ′zi + ξi.

where h is some transformation of y (i.e., a log). The densities of y implied by each model are

f(yi|β, xi, zi)

and
g(yi|γ, xi, zi).

We want to know if f or g is a better model of y.

Technical take: The first model is nested within the second model if for all possible values of β
we can find a γ such that f(yi|β, zi, xi) = g(yi|γ, zi, xi) for all (x, z, y). When h(yi) = yi then
these models are nested if one set of regressors is a subset of the other. They are non-nested
and overlapping if they have some variables in common, including the constant. In this
case there are some β and γ such that f(yi|β, zi, xi) = g(yi|γ, zi, xi) for some (x, z, y). Finally,
models are strictly non-nested if they have no variables in common, including the constant.
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In this case there are no β and γ such that f(yi|β, zi, xi) = g(yi|γ, zi, xi) for any (x, z, y).
Another way that two models can be strictly non-nested is in terms of h. In this case, models
can have the same variables, but in one case y is transformed.

Simple take:

• If the covariates in model 1 are a subset of the covariates in model 2 and they have the
exact same dependent variable then model 1 is nested in model 2 (use F or χ2 tests
from before)

• If the covariates in model 1 are not a subset of the covariates in model 2 (and vice-versa),
but there are some common covariates, and they have the same dependent variable
then the models are overlapping and non-nested

• If none of the covariates in model 1 are in model 2 (and vice-versa) and they have the
same dependent variable then the models are strictly non-nested

• If model 1 has dependent variable y and model 2 has dependent variable h(y) then they
are strictly non-nested

Let h(yi) = log(yi) and let xi = zi. Now we’ve got a case of (strictly) non-nested models even
with the same regressors. Notice

yi = β′xi + εi Model I: yi|xi ∼ N(β′xi, σ2
ε)

log(yi) = γ′xi + ξi Model II: yi|xi ∼ Log-Normal(β′xi, σ2
ξ )

yi = exp(γ′xi + ξi)

= eγ
′xieξi

These two models are strictly non-nested despite containing the same covariates because they
have completely different likelihoods. Model I has an additive error term, while Model II is
multiplicative.

Vuong (1989) proposes a two-part test. First, he proposes a test for whether the models
are distinguishable. Based on the results of that test, there are different tests for model
comparison. The first test of whether the models overlapping or not is a bit cumbersome;
we’ll skip the derivation.

(Technical details; skip and hit the application) However, if we reject the null of indistin-
guishable models we can build Vuong’s non-nested test based on the what’s known as the
likelihood ratio:

LR(β̂, γ̂) =
N∑
i=1

log
f(yi|xi, β̂)
g(yi|xi, γ̂)

 .
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Notice that if f is the better model then we would expect that f(yi|xi, β̂) would be greater
than g(yi|xi, γ̂) on average (bigger likelihood implies better fit). The null hypothesis in
question then becomes

H0 : E[LR(β̂, γ̂)] = 0

Hf : E[LR(β̂, γ̂)] > 0 Model I is better

Hg : E[LR(β̂, γ̂)] < 0 Model II is better

Note that this means we will be conducting an unusual two-sided hypothesis test to see which
model ‘wins.’ Further note that both models can be terrible, but the Vuong test helps us see
which one is “closer” to the truth. To form the test statistic we get a familiar-ish setup

V = LR(β̂, γ̂)− 0√
Nω̂

,

where ω̂ is the estimated variance of the LR such that

ω̂2 = 1
N

N∑
i=1

log
f(yi|xi, β̂)
g(yi|xi, γ̂)

2

−

 1
N

N∑
i=1

log
f(yi|xi, β̂)
g(yi|xi, γ̂)

2

.

The main result from Vuong (1989) is that for if ω > 0 then V d→ N(0, 1) under the null.
The first test is whether ω = 0, if we fail that test, then there is not enough variance in the
LR to move onto the second test. If Hf is true than V p→ ∞, while under Hg ,V p→ −∞.
If V is greater than a critical z∗ we conclude that Model 1 is better, and if V is less than
−z∗ we conclude Model II is better. So if we’re testing at the 5% level, we set z∗ = 1.96 and
compare. Note that if V is between these cutpoints, we can’t conclude that either is better.

Finally, note that if the models “fail” the initial test, then we conclude that we can’t use
data to tell them apart. There are workarounds if you make some different assumptions, but
we’re going to skip that for now.

5.7 Applications

We did a lot of work there. Let’s put it to use with some careful data analysis.

library(readstata13)
library(lmtest)
library(sandwich)
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library(car)
library(nonnest2)
library(margins)
rm(list=ls())
shady <- read.dta13("Rcode/datasets/shady.dta")

shady$salepric <- shady$salepric/10000 # Tens of thousands
model1 <- lm(salepric~cond+grade+aircon+fireplc+bedroom+fullbth

+halfbth+live_fsq,
data=shady, x=TRUE)

model1.log <- update(model1, log(salepric)~.)

round(coeftest(model1, vcov=vcovHC), 4)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.6559 1.2556 14.0615 <2e-16 ***
## cond -2.5317 0.2723 -9.2986 <2e-16 ***
## grade -2.6301 0.3261 -8.0652 <2e-16 ***
## aircon 1.6970 0.4605 3.6852 0.0002 ***
## fireplc 3.0089 0.6252 4.8126 <2e-16 ***
## bedroom 0.4865 0.2923 1.6644 0.0963 .
## fullbth 0.2146 0.4252 0.5049 0.6138
## halfbth 2.7852 0.5041 5.5248 <2e-16 ***
## live_fsq 0.0041 0.0004 9.5678 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

round(coeftest(model1.log, vcov=vcovHC),4) # beta.hat * 100 % increase

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8197 0.1039 27.1455 <2e-16 ***
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## cond -0.1809 0.0216 -8.3725 <2e-16 ***
## grade -0.2465 0.0269 -9.1756 <2e-16 ***
## aircon 0.0974 0.0366 2.6586 8e-03 **
## fireplc 0.1876 0.0419 4.4745 <2e-16 ***
## bedroom 0.0716 0.0200 3.5745 4e-04 ***
## fullbth 0.0557 0.0284 1.9623 5e-02 *
## halfbth 0.1881 0.0372 5.0512 <2e-16 ***
## live_fsq 0.0002 0.0000 6.4191 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#test for heteroskedasticity

bptest(model1)

##
## studentized Breusch-Pagan test
##
## data: model1
## BP = 83.552, df = 8, p-value = 9.398e-15

bptest(model1.log)

##
## studentized Breusch-Pagan test
##
## data: model1.log
## BP = 19.86, df = 8, p-value = 0.01088

#Shapiro test for normality
shapiro.test(model1$residuals)

##
## Shapiro-Wilk normality test
##
## data: model1$residuals
## W = 0.88245, p-value < 2.2e-16
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shapiro.test(model1.log$residuals)

##
## Shapiro-Wilk normality test
##
## data: model1.log$residuals
## W = 0.86064, p-value < 2.2e-16

#visual
par(mfrow=c(2,2))
plot(model1, id.n=5)
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plot(model1.log, id.n=5)
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## What about dummies for the discrete conditions and grade?
table(shady$grade)

##
## 1 2 3 4
## 129 441 500 27

table(shady$cond)

##
## 1 2 3 4 5 6
## 29 143 205 626 63 31

model1.log.dummies <- update(model1.log,
. ~ . -cond+factor(cond)-grade+factor(grade))

round(coeftest(model1.log.dummies, vcov=vcovHC), 4)
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##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1145 0.1486 14.2270 <2e-16 ***
## aircon 0.1194 0.0363 3.2874 0.0010 ***
## fireplc 0.1785 0.0419 4.2629 <2e-16 ***
## bedroom 0.0601 0.0206 2.9203 0.0036 **
## fullbth 0.0639 0.0290 2.2024 0.0278 *
## halfbth 0.1668 0.0382 4.3662 <2e-16 ***
## live_fsq 0.0002 0.0000 6.4661 <2e-16 ***
## factor(cond)2 0.0429 0.1410 0.3046 0.7607
## factor(cond)3 -0.0381 0.1412 -0.2699 0.7873
## factor(cond)4 -0.3736 0.1370 -2.7276 0.0065 **
## factor(cond)5 -0.4840 0.1712 -2.8262 0.0048 **
## factor(cond)6 -0.4786 0.2004 -2.3889 0.0171 *
## factor(grade)2 -0.1255 0.0489 -2.5636 0.0105 *
## factor(grade)3 -0.4261 0.0560 -7.6028 <2e-16 ***
## factor(grade)4 -0.7790 0.1867 -4.1733 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(model1.log.dummies)
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## definitely some differing effects in conditions
## Some are positive and some are negative relative to the excluded.
## For grade the prices may be decreasing at a linear rate?

linearHypothesis(model1.log.dummies, c("factor(cond)2-factor(cond)3=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)2 - factor(cond)3 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
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##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 2.1025 0.1473

linearHypothesis(model1.log.dummies, c("factor(cond)2-factor(cond)4=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)2 - factor(cond)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 63.596 3.862e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)2-factor(cond)5=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)2 - factor(cond)5 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
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##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 21.834 3.347e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)2-factor(cond)6=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)2 - factor(cond)6 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 11.527 0.0007108 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)3-factor(cond)4=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)3 - factor(cond)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
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##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 47.279 1.039e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)3-factor(cond)5=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)3 - factor(cond)5 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 15.984 6.823e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)3-factor(cond)6=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)3 - factor(cond)6 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
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##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 8.2791 0.004089 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(cond)4-factor(cond)5=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)4 - factor(cond)5 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 0.9695 0.325

linearHypothesis(model1.log.dummies, c("factor(cond)4-factor(cond)6=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)4 - factor(cond)6 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
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## 1 1083
## 2 1082 1 0.4806 0.4883

linearHypothesis(model1.log.dummies, c("factor(cond)5-factor(cond)6=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(cond)5 - factor(cond)6 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 0.0011 0.9736

## No differences between
# 1&2
# 1&3
# 2&3
# 4&5
# 4&6
# 5&6
# significant differences in price for the other groups

#differences across grades?
linearHypothesis(model1.log.dummies, c("factor(grade)2-factor(grade)3=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(grade)2 - factor(grade)3 = 0
##
## Model 1: restricted model
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## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 62.1 7.918e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(grade)2-factor(grade)4=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(grade)2 - factor(grade)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 13.802 0.0002136 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(grade)3-factor(grade)4=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(grade)3 - factor(grade)4 = 0
##
## Model 1: restricted model
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## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 4.0684 0.04394 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# significant differences between all grades

# IS the jump about the same across grades? (nonlinear trend?)
# is the gap between 1 and 3 equal to 2 gaps from 1-2?
# is the gap between 1 and 4 equal to 3 gaps from 1-2?
linearHypothesis(model1.log.dummies, c("factor(grade)3-2*factor(grade)2=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## - 2 factor(grade)2 + factor(grade)3 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 6.7298 0.009609 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.dummies, c("factor(grade)4-3*factor(grade)2=0"), vcov=vcovHC)

## Linear hypothesis test
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##
## Hypothesis:
## - 3 factor(grade)2 + factor(grade)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 4.3193 0.03792 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# OR

#Is the gap from 3-4 equal to the gap between 1-2?
linearHypothesis(model1.log.dummies, c("factor(grade)4-factor(grade)3-factor(grade)2=0"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## - factor(grade)2 - factor(grade)3 + factor(grade)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 1.6795 0.1953
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#Is the gap from 3-4 equal to the gap between 2-3?
linearHypothesis(model1.log.dummies, c("factor(grade)4-factor(grade)3=factor(grade)3-factor(grade)2"), vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## factor(grade)2 - 2 factor(grade)3 + factor(grade)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1083
## 2 1082 1 0.0822 0.7744

# If nothing else, there is something btwn 2-3 that doesn't look like 1-2
# some evidence for nonlinearity in the first set, but not across all categories
# Still it seems that letting the dummies do their thing is valuable flexibility

###### INTERACTIONS #####
# What about a model that interacts the living space with with the grade?

model1.log.interactions <- update(model1.log.dummies,
. ~ . + factor(grade):live_fsq)

plot(model1.log.interactions)
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round(coeftest(model1.log.interactions, vcov=vcovHC),4)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2363 0.1447 15.4567 <2e-16 ***
## aircon 0.1251 0.0365 3.4263 0.0006 ***
## fireplc 0.1838 0.0421 4.3682 <2e-16 ***
## bedroom 0.0524 0.0208 2.5213 0.0118 *
## fullbth 0.0585 0.0298 1.9596 0.0503 .
## halfbth 0.1707 0.0382 4.4692 <2e-16 ***
## live_fsq 0.0001 0.0000 5.9146 <2e-16 ***
## factor(cond)2 0.0447 0.1414 0.3161 0.7520
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## factor(cond)3 -0.0435 0.1419 -0.3066 0.7592
## factor(cond)4 -0.3684 0.1374 -2.6804 0.0075 **
## factor(cond)5 -0.5139 0.1767 -2.9084 0.0037 **
## factor(cond)6 -0.5006 0.2079 -2.4077 0.0162 *
## factor(grade)2 -0.2544 0.0754 -3.3717 0.0008 ***
## factor(grade)3 -0.6136 0.0966 -6.3492 <2e-16 ***
## factor(grade)4 -0.7123 0.4724 -1.5079 0.1319
## live_fsq:factor(grade)2 0.0001 0.0000 1.6054 0.1087
## live_fsq:factor(grade)3 0.0001 0.0001 1.6538 0.0985 .
## live_fsq:factor(grade)4 0.0000 0.0002 -0.1671 0.8674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.interactions,
"live_fsq+live_fsq:factor(grade)2 =0", vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## live_fsq + live_fsq:factor(grade)2 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade) + live_fsq:factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1080
## 2 1079 1 31.763 2.223e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.interactions,
"live_fsq+live_fsq:factor(grade)3 =0", vcov=vcovHC)

## Linear hypothesis test
##
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## Hypothesis:
## live_fsq + live_fsq:factor(grade)3 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade) + live_fsq:factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1080
## 2 1079 1 16.19 6.129e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1.log.interactions,
"live_fsq+live_fsq:factor(grade)4 =0", vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## live_fsq + live_fsq:factor(grade)4 = 0
##
## Model 1: restricted model
## Model 2: log(salepric) ~ aircon + fireplc + bedroom + fullbth + halfbth +
## live_fsq + factor(cond) + factor(grade) + live_fsq:factor(grade)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 1080
## 2 1079 1 0.1868 0.6657

# # MARGINAL EFFECTS "BY HAND"
# names <- c("live_fsq",
# "live_fsq:factor(grade)2",
# "live_fsq:factor(grade)3",
# "live_fsq:factor(grade)4")
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# D <- rbind(c(1, 0,0,0),
# cbind(1, diag(3)))
# D
# b.needed <- model1.log.interactions$coef[names]
# ME <- D %*% b.needed
# V <- vcovHC(model1.log.interactions)[names, names]
# VME <- D %*% V %*% t(D)
# CI.ME <- 1.96 * sqrt(diag(VME))
# plotME <- data.frame(ME=ME*100,
# lo=100*(ME-CI.ME),
# hi=100*(ME+CI.ME),
# grade=1:4)

Marginals <- margins(model1.log.interactions,
variables = "live_fsq",
at=data.frame(grade=c(1:4)),
vcov=vcovHC(model1.log.interactions))

summary(Marginals)

## factor grade AME SE z p lower upper
## live_fsq 1.0000 0.0001 0.0000 5.9146 0.0000 0.0001 0.0002
## live_fsq 2.0000 0.0002 0.0000 5.6358 0.0000 0.0001 0.0003
## live_fsq 3.0000 0.0002 0.0001 4.0237 0.0001 0.0001 0.0004
## live_fsq 4.0000 0.0001 0.0002 0.4322 0.6656 -0.0004 0.0006

class(summary(Marginals))

## [1] "summary.margins" "data.frame"

plotME <- summary(Marginals)
# NOTE WHAT MARGINS DOESN'T DO IS GIVE US PERCENTAGES
# WE NEED TO MULIPLY BY 100 OURSELVES
plotME$AME <- plotME$AME*100
plotME$SE <- plotME$SE*100
plotME$lower <- plotME$lower*100
plotME$upper <- plotME$upper*100
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#For adjusting the margins the order
#bottom, left, top, right
#default values are c(5, 4, 4, 2) +.1
#see ?par for more details
par(mfrow=c(1,1), mar=c(5, 5, 4, 2)+.1)
plot(AME~grade, data=plotME,

ylim=c(min(plotME$lower),max(plotME$upper)),
pch=19,
ylab="Marginal effect of liveable space (sq. ft.)\non sale price (percent increase in price)",
xlab="Grade")

segments(y0=plotME$lower, y1=plotME$upper, x0=plotME$grade)
abline(h=0, col="grey45", lty="dashed")

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

Grade

M
ar

gi
na

l e
ffe

ct
 o

f l
iv

ea
bl

e 
sp

ac
e 

(s
q.

 ft
.)

on
 s

al
e 

pr
ic

e 
(p

er
ce

nt
 in

cr
ea

se
 in

 p
ric

e)

## finally what about some time effects
model1.log.time <- update(model1.log.interactions,
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. ~ . +yearblt+ factor(saleyr))
round(coeftest(model1.log.time, vcov=vcovHC),4)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9648 1.0870 -0.8876 0.3750
## aircon 0.1033 0.0373 2.7725 0.0057 **
## fireplc 0.1970 0.0433 4.5539 <2e-16 ***
## bedroom 0.0616 0.0214 2.8859 0.0040 **
## fullbth 0.0337 0.0299 1.1268 0.2601
## halfbth 0.1448 0.0370 3.9105 0.0001 ***
## live_fsq 0.0002 0.0000 7.8283 <2e-16 ***
## factor(cond)2 0.0062 0.1458 0.0427 0.9659
## factor(cond)3 -0.0746 0.1458 -0.5114 0.6092
## factor(cond)4 -0.3829 0.1405 -2.7257 0.0065 **
## factor(cond)5 -0.5479 0.1796 -3.0504 0.0023 **
## factor(cond)6 -0.5197 0.2104 -2.4705 0.0136 *
## factor(grade)2 -0.1872 0.0792 -2.3651 0.0182 *
## factor(grade)3 -0.6043 0.0965 -6.2612 <2e-16 ***
## factor(grade)4 -0.5421 0.4773 -1.1357 0.2563
## yearblt 0.0016 0.0006 2.8248 0.0048 **
## factor(saleyr)1998 0.1086 0.0459 2.3664 0.0181 *
## factor(saleyr)1999 0.1844 0.0485 3.8010 0.0002 ***
## factor(saleyr)2000 0.2538 0.0502 5.0603 <2e-16 ***
## factor(saleyr)2001 0.1293 0.0640 2.0204 0.0436 *
## live_fsq:factor(grade)2 0.0000 0.0000 0.8220 0.4113
## live_fsq:factor(grade)3 0.0001 0.0001 1.5895 0.1122
## live_fsq:factor(grade)4 -0.0001 0.0003 -0.4559 0.6486
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

par(mfrow=c(2,2))
plot(model1.log.time)
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# We can at least see what does better between the normal and the log
vuongtest(model1, model1.log)

## Warning in imhof(n * omega.hat.2, lamstar^2): Note that Qq + abserr is positive.

##
## Model 1
## Class: lm
## Call: lm(formula = salepric ~ cond + grade + aircon + fireplc + bedroom + ...
##
## Model 2
## Class: lm
## Call: lm(formula = log(salepric) ~ cond + grade + aircon + fireplc + ...
##
## Variance test
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## H0: Model 1 and Model 2 are indistinguishable
## H1: Model 1 and Model 2 are distinguishable
## w2 = 3.910, p = <2e-16
##
## Non-nested likelihood ratio test
## H0: Model fits are equal for the focal population
## H1A: Model 1 fits better than Model 2
## z = -41.095, p = 1
## H1B: Model 2 fits better than Model 1
## z = -41.095, p = < 2.2e-16

vuongtest(update(model1.log.interactions, salepric ~ .),
model1.log.interactions)

##
## Model 1
## Class: lm
## Call: lm(formula = salepric ~ aircon + fireplc + bedroom + fullbth + ...
##
## Model 2
## Class: lm
## Call: lm(formula = log(salepric) ~ aircon + fireplc + bedroom + fullbth + ...
##
## Variance test
## H0: Model 1 and Model 2 are indistinguishable
## H1: Model 1 and Model 2 are distinguishable
## w2 = 3.697, p = 1.92e-08
##
## Non-nested likelihood ratio test
## H0: Model fits are equal for the focal population
## H1A: Model 1 fits better than Model 2
## z = -41.968, p = 1
## H1B: Model 2 fits better than Model 1
## z = -41.968, p = < 2.2e-16

That was fun let’s try another one. Let’s consider the relationship between a U.S. Senator’s
ideolgoy and vote share. There’s a line of thought that suggests more moderate senators
should acheive higher vote shares. We can check it out.
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library(readstata13)
library(lmtest)
library(sandwich)
library(car)
library(margins)
rm(list=ls())

senate.data <- read.dta13("Rcode/datasets/senate_expanded.dta")
# print(cbind(colnames(senate.data), attributes(senate.data)$var.labels))
head(senate.data)

## year st_abr st_name st_code st_south st_pop st_uemp inc_icpsr inc_pos
## 1 1980 AK Alaska 81 0 401851 9.4 12105 -0.285
## 2 1980 AL Alabama 41 1 3893888 8.4 14711 -0.226
## 3 1980 AR Arkansas 42 1 2286435 7.5 14300 -0.313
## 4 1980 AZ Arizona 61 0 2718215 6.7 3658 0.608
## 5 1980 CA California 71 0 23667902 6.9 12103 -0.409
## 6 1980 CO Colorado 62 0 2889964 5.9 14305 -0.409
## inc_spend ch_qual ch_spend ch_wealthy inc_2p_share st_id inc_tenure inc_rep
## 1 NA NA NA NA NA NA 12 0
## 2 NA NA NA NA NA 26.2 2 0
## 3 220861 0 119196 0 0.5911147 11.5 6 0
## 4 949992 0 2085242 1 0.5054943 23.4 12 1
## 5 2823607 0 1152272 0 0.6033472 7.4 12 0
## 6 1142304 3 1085205 0 0.5082657 15.8 6 0

plot(inc_2p_share~inc_pos, data=senate.data) #positives are more conservative
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#suspect a polynomial, but linear, squared, or cubic?

model0 <- lm(inc_2p_share~inc_pos, data=senate.data)
model1 <- lm(inc_2p_share~inc_pos+I(inc_pos^2), data=senate.data)
model1a <- lm(inc_2p_share~inc_pos+I(inc_pos^2)+I(inc_pos^3), data=senate.data)

which.max(c(summary(model0)$adj.r.squared,
summary(model1)$adj.r.squared,
summary(model1a)$adj.r.squared))

## [1] 2

which.min(c(AIC(model0), AIC(model1), AIC(model1a)))

## [1] 2

which.min(c(BIC(model0), BIC(model1), BIC(model1a)))

## [1] 2

waldtest(model0, model1, vcov=vcovHC)

## Wald test
##
## Model 1: inc_2p_share ~ inc_pos
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## Model 2: inc_2p_share ~ inc_pos + I(inc_pos^2)
## Res.Df Df F Pr(>F)
## 1 294
## 2 293 1 8.0501 0.004868 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

waldtest(model0, model1a, vcov=vcovHC)

## Wald test
##
## Model 1: inc_2p_share ~ inc_pos
## Model 2: inc_2p_share ~ inc_pos + I(inc_pos^2) + I(inc_pos^3)
## Res.Df Df F Pr(>F)
## 1 294
## 2 292 2 3.954 0.02021 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

waldtest(model1, model1a, vcov=vcovHC)

## Wald test
##
## Model 1: inc_2p_share ~ inc_pos + I(inc_pos^2)
## Model 2: inc_2p_share ~ inc_pos + I(inc_pos^2) + I(inc_pos^3)
## Res.Df Df F Pr(>F)
## 1 293
## 2 292 1 0.3952 0.5301

#having made an initial choice let's check it out
bptest(model1)

##
## studentized Breusch-Pagan test
##
## data: model1
## BP = 6.0178, df = 2, p-value = 0.04935
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shapiro.test(model1$residuals)

##
## Shapiro-Wilk normality test
##
## data: model1$residuals
## W = 0.97703, p-value = 0.000109

coeftest(model1, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6264730 0.0095611 65.5228 < 2.2e-16 ***
## inc_pos -0.0072500 0.0174857 -0.4146 0.678719
## I(inc_pos^2) -0.1798957 0.0634045 -2.8373 0.004868 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model1, c("inc_pos=0", "I(inc_pos^2)=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## inc_pos = 0
## I(inc_pos^2) = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ inc_pos + I(inc_pos^2)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 295
## 2 293 2 5.2744 0.005619 **
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

newdata <- data.frame(inc_pos=seq(-.6, .6, length=100))
yhat <- predict(model1, newdata = newdata,

interval = "confidence")
#positives are more conservative
plot(inc_2p_share~inc_pos, data=senate.data,

xlab="Incumbent position", ylab="Incumbent vote share",
col="grey25")

lines(y=yhat[,"fit"],x=newdata$inc_pos, lwd=2)
lines(y=yhat[,"lwr"],x=newdata$inc_pos, col="blue", lty="dotted", lwd=2)
lines(y=yhat[,"upr"],x=newdata$inc_pos, col="blue", lty="dotted", lwd=2)
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ME <- margins(model1,
variables="inc_pos",
at=list(inc_pos=seq(-0.6, 0.6, by=0.1)),
vcov=vcovHC(model1))

## Warning in check_values(data, at): A 'at' value for 'inc_pos' is outside
## observed data range (-0.595000028610229,0.662000000476837)!

summary(ME)

## factor inc_pos AME SE z p lower upper
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## inc_pos -0.6000 0.2086 0.0842 2.4790 0.0132 0.0437 0.3736
## inc_pos -0.5000 0.1726 0.0718 2.4060 0.0161 0.0320 0.3133
## inc_pos -0.4000 0.1367 0.0595 2.2980 0.0216 0.0201 0.2532
## inc_pos -0.3000 0.1007 0.0474 2.1242 0.0337 0.0078 0.1936
## inc_pos -0.2000 0.0647 0.0358 1.8099 0.0703 -0.0054 0.1348
## inc_pos -0.1000 0.0287 0.0251 1.1435 0.2528 -0.0205 0.0780
## inc_pos 0.0000 -0.0073 0.0175 -0.4146 0.6784 -0.0415 0.0270
## inc_pos 0.1000 -0.0432 0.0174 -2.4878 0.0129 -0.0773 -0.0092
## inc_pos 0.2000 -0.0792 0.0249 -3.1817 0.0015 -0.1280 -0.0304
## inc_pos 0.3000 -0.1152 0.0355 -3.2461 0.0012 -0.1847 -0.0456
## inc_pos 0.4000 -0.1512 0.0471 -3.2082 0.0013 -0.2435 -0.0588
## inc_pos 0.5000 -0.1871 0.0592 -3.1621 0.0016 -0.3031 -0.0711
## inc_pos 0.6000 -0.2231 0.0715 -3.1222 0.0018 -0.3632 -0.0831

plot.ME <- summary(ME)
plot(AME~inc_pos,data=plot.ME, type="l",

ylab="Marginal effect of positioning on vote share", ylim=c(-0.4, 0.4),
xlab="Incumbent position")

lines(plot.ME$lower, x=plot.ME$inc_pos, type="l", lty="dashed", col="blue")
lines(plot.ME$upper, x=plot.ME$inc_pos, type="l", lty="dashed", col="blue")
rug(jitter(senate.data$inc_pos)) #jitter spreads out clumped data

## Warning in rug(jitter(senate.data$inc_pos)): some values will be clipped

abline(h=0,col="grey50")
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#What vote share is the maximum? Is is at inc_pos=0?
# By Hand
# max.hat <- -model1$coef["inc_pos"]/(2*model1$coef["I(inc_pos^2)"])
# V <- vcovHC(model1)
# Dmax <- c(0, #D_\beta0
# -1/(2*model1$coef["I(inc_pos^2)"]),#D_\beta1
# model1$coef["inc_pos"]/(2*model1$coef["I(inc_pos^2)"]^2)) #D_\beta2
# se.max.hat <- sqrt(Dmax %*% V %*% Dmax)
# c(max.hat - 1.96*se.max.hat, max.hat+1.96*se.max.hat)

# Using the delta method
# H0: -b1/(2*b2) =0
# HA: -b1/(2*b2) != 0

deltaMethod(model1,
g="-inc_pos/(2*`I(inc_pos^2)`)", #note the back ticks ``
vcov=vcovHC,
rhs=0)

## Estimate SE 2.5 % 97.5 %
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## -inc_pos/(2 * `I(inc_pos^2)`) -0.020151 0.051658 -0.121399 0.081098
## Hypothesis z value Pr(>|z|)
## -inc_pos/(2 * `I(inc_pos^2)`) 0.000000 -0.3901 0.6965

# Can't reject H0; 95% CI contains 0.

# Can't reject H0

### Let's factor in spending per capita
senate.data$ch_spend_pc <- senate.data$ch_spend/senate.data$st_pop
senate.data$inc_spend_pc <- senate.data$inc_spend/senate.data$st_pop

model2 <- lm(inc_2p_share~inc_pos+I(inc_pos^2)
+inc_rep +inc_tenure +ch_qual+ st_uemp
+ch_spend_pc+inc_spend_pc,
data=senate.data)

coeftest(model2, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.69217613 0.02572159 26.9103 < 2.2e-16 ***
## inc_pos 0.05351640 0.04214181 1.2699 0.20515
## I(inc_pos^2) -0.14902374 0.06145193 -2.4250 0.01593 *
## inc_rep -0.04011813 0.02672581 -1.5011 0.13443
## inc_tenure 0.00179475 0.00072305 2.4822 0.01363 *
## ch_qual -0.01818382 0.00312897 -5.8114 1.650e-08 ***
## st_uemp -0.00360359 0.00219207 -1.6439 0.10129
## ch_spend_pc -0.06342234 0.01082199 -5.8605 1.269e-08 ***
## inc_spend_pc 0.01362182 0.00672828 2.0246 0.04384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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# On average, a 1 dollar/person increase in challenger spending
# is associated with a 6.3 percentage point decrease in incumbent party
# vote share, holding everything else constant
# On average, a 1 dollar/person increase in incumbent spending
# is associated with a 1.4 percentage point increase in incumbent party
# vote share, holding everything else constant

# These seem a bit unbelievable, there are probably diminishing
# returns to money maybe those should be logged
senate.data$log_ch_spend_pc <- log(senate.data$ch_spend_pc+1)
senate.data$log_inc_spend_pc <- log(senate.data$inc_spend_pc+1)

model2a <- lm(inc_2p_share~inc_pos+I(inc_pos^2)
+inc_rep +inc_tenure +ch_qual+ st_uemp
+log_ch_spend_pc+log_inc_spend_pc,
data=senate.data)

coeftest(model2a, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.68995626 0.02625149 26.2826 < 2.2e-16 ***
## inc_pos 0.04613681 0.04069958 1.1336 0.257914
## I(inc_pos^2) -0.11668730 0.05882707 -1.9836 0.048260 *
## inc_rep -0.04069692 0.02558691 -1.5905 0.112819
## inc_tenure 0.00155544 0.00067793 2.2944 0.022493 *
## ch_qual -0.01480001 0.00288155 -5.1361 5.196e-07 ***
## st_uemp -0.00363742 0.00205431 -1.7706 0.077688 .
## log_ch_spend_pc -0.16500975 0.01650632 -9.9968 < 2.2e-16 ***
## log_inc_spend_pc 0.05568772 0.01555663 3.5797 0.000404 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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# NOTE: the dividing/multiplying by 100 cancel each other out
# in this case because the vote share is proportion (in between 0 and 1)

# On average, a 1% increase in challenger spending
# is associated with a 0.165 percentage point
# decrease in incumbent party
# vote share, holding everything else constant
# (-0.16500975/100) * 100
# Interpret logged X (1%) | From prob scale to pp

#####################################################
# On average, a 1% increase in incumbent spending
# is associated with a 0.06 percentage point increase in incumbent party
# vote share, holding everything else constant
# (0.05568772/100) * 100
# Interpret logged X (1%) | From prob scale to pp

## Does tenure affect the effectiveness of spending?
model3 <- lm(inc_2p_share~inc_pos+I(inc_pos^2)

+inc_rep
+inc_tenure*log_inc_spend_pc

+inc_tenure*log_ch_spend_pc
+ch_qual+ st_uemp,
data=senate.data, x=TRUE)

coeftest(model3, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6897879 0.0297271 23.2040 < 2.2e-16 ***
## inc_pos 0.0471371 0.0408860 1.1529 0.24993
## I(inc_pos^2) -0.1170935 0.0589255 -1.9871 0.04787 *
## inc_rep -0.0410795 0.0256949 -1.5987 0.11099
## inc_tenure 0.0014197 0.0014393 0.9864 0.32479
## log_inc_spend_pc 0.0323810 0.0289879 1.1171 0.26492
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## log_ch_spend_pc -0.1239383 0.0278366 -4.4523 1.222e-05 ***
## ch_qual -0.0150155 0.0029251 -5.1334 5.287e-07 ***
## st_uemp -0.0034145 0.0020573 -1.6597 0.09808 .
## inc_tenure:log_inc_spend_pc 0.0018438 0.0020283 0.9090 0.36410
## inc_tenure:log_ch_spend_pc -0.0032265 0.0020713 -1.5577 0.12041
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(senate.data$inc_tenure) #what are some reasonable values?

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 6.00 12.00 12.97 18.00 42.00 1

# ### MARGINAL EFFECTS BY HAND ###
# marginal.inc <- model3$coefficients['log_inc_spend_pc']+
# model3$coefficients['inc_tenure:log_inc_spend_pc']*seq(0, 42, by=6)
# V <- vcovHC(model3)
# ## Recall that var(X+bY) = var(X) + b^2 * var(Y) + 2b*cov(X,Y)
# var.marginal.inc <- diag(V)['log_ch_spend_pc'] + #var beta_s
# seq(0, 42, by=6)^2 * diag(V)['inc_tenure:log_ch_spend_pc'] + #t^2 var(beta_int)
# 2*V['log_ch_spend_pc','inc_tenure:log_ch_spend_pc']*seq(0, 42, by=6)
# se.marginal.inc <- sqrt(var.marginal)
# signif(cbind(marginal.inc, se.marginal.inc),2)
#
# marginal.ch <- model3$coefficients['log_ch_spend_pc']+
# model3$coefficients['inc_tenure:log_ch_spend_pc']*seq(0, 42, by=6)
# ## Recall that var(X+bY) = var(X) + b^2 * var(Y) + 2b*cov(X,Y)
# var.marginal.ch <- diag(V)['log_ch_spend_pc'] + #var beta_s
# seq(0, 42, by=6)^2 * diag(V)['inc_tenure:log_ch_spend_pc'] + #t^2 var(beta_int)
# 2*V['log_ch_spend_pc','inc_tenure:log_ch_spend_pc']*seq(0, 42, by=6)
# se.marginal.ch <- sqrt(var.marginal.ch)
# signif(cbind(marginal.ch, se.marginal.ch),2)

ME <- margins(model3,
variables=c("log_inc_spend_pc", "log_ch_spend_pc"),
at=list(inc_tenure=seq(0, 42, by=6)),
vcov=vcovHC(model3))

summary(ME)
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## factor inc_tenure AME SE z p lower upper
## log_ch_spend_pc 0.0000 -0.1239 0.0278 -4.4523 0.0000 -0.1785 -0.0694
## log_ch_spend_pc 6.0000 -0.1433 0.0190 -7.5518 0.0000 -0.1805 -0.1061
## log_ch_spend_pc 12.0000 -0.1627 0.0159 -10.2029 0.0000 -0.1939 -0.1314
## log_ch_spend_pc 18.0000 -0.1820 0.0214 -8.5130 0.0000 -0.2239 -0.1401
## log_ch_spend_pc 24.0000 -0.2014 0.0311 -6.4690 0.0000 -0.2624 -0.1404
## log_ch_spend_pc 30.0000 -0.2207 0.0423 -5.2175 0.0000 -0.3037 -0.1378
## log_ch_spend_pc 36.0000 -0.2401 0.0540 -4.4435 0.0000 -0.3460 -0.1342
## log_ch_spend_pc 42.0000 -0.2595 0.0660 -3.9301 0.0001 -0.3888 -0.1301
## log_inc_spend_pc 0.0000 0.0324 0.0290 1.1171 0.2640 -0.0244 0.0892
## log_inc_spend_pc 6.0000 0.0434 0.0196 2.2144 0.0268 0.0050 0.0819
## log_inc_spend_pc 12.0000 0.0545 0.0150 3.6282 0.0003 0.0251 0.0840
## log_inc_spend_pc 18.0000 0.0656 0.0190 3.4430 0.0006 0.0282 0.1029
## log_inc_spend_pc 24.0000 0.0766 0.0282 2.7163 0.0066 0.0213 0.1319
## log_inc_spend_pc 30.0000 0.0877 0.0391 2.2454 0.0247 0.0111 0.1642
## log_inc_spend_pc 36.0000 0.0988 0.0505 1.9554 0.0505 -0.0002 0.1977
## log_inc_spend_pc 42.0000 0.1098 0.0622 1.7647 0.0776 -0.0121 0.2318

plot.ME <- summary(ME)
par(mar=c(5, 6, 4, 2)+.1)
plot(AME~inc_tenure,data=plot.ME, subset=factor=="log_inc_spend_pc",

type="l", col="blue",
ylab="Marginal effect of a 1% increase\nin spending on vote share (pp)",
ylim=c(-.4, .25),
xlab="Incumbent Tenure")

lines(lower~inc_tenure,data=plot.ME, subset=factor=="log_inc_spend_pc",
type="l", lty="dashed", col="blue")

lines(upper~inc_tenure,data=plot.ME, subset=factor=="log_inc_spend_pc",
type="l", lty="dashed", col="blue")

lines(AME~inc_tenure,data=plot.ME, subset=factor=="log_ch_spend_pc",
type="l", col="red")

lines(lower~inc_tenure,data=plot.ME, subset=factor=="log_ch_spend_pc",
type="l", lty="dashed", col="red")

lines(upper~inc_tenure,data=plot.ME, subset=factor=="log_ch_spend_pc",
type="l", lty="dashed", col="red")
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rug(jitter(senate.data$inc_tenure)) #jitter spreads out clumped data
legend("topleft", legend=c("Inc. Spending", "Ch. Spending"),

col=c("blue", "red"), lty=1)
abline(h=0,col="grey50")
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# The effective of spending is increasing with tenure, but not by
# much on either side. We might be to argue that incumbent spending
# has minimal effect, while challenge spending is effect.
# But that doesn't feel right. Probably what we should ask ourselves is whether
# the interaction model is reasonable and correctly specified.
waldtest(model3, model2a, vcov=vcovHC)

## Wald test
##
## Model 1: inc_2p_share ~ inc_pos + I(inc_pos^2) + inc_rep + inc_tenure *
## log_inc_spend_pc + inc_tenure * log_ch_spend_pc + ch_qual +
## st_uemp
## Model 2: inc_2p_share ~ inc_pos + I(inc_pos^2) + inc_rep + inc_tenure +
## ch_qual + st_uemp + log_ch_spend_pc + log_inc_spend_pc
## Res.Df Df F Pr(>F)
## 1 284
## 2 286 -2 1.2164 0.2978
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which.min(c(BIC(model3), BIC(model2a)))

## [1] 2

# these basic diagnostics tell us that maybe the interaction isn't all the helpful
# for model fit.

#let's say we just wanted to predict a win/loss we could set it up as an LPM
lpm <- lm(I(inc_2p_share>.5)~log_inc_spend_pc+log_ch_spend_pc, data=senate.data)
coeftest(lpm, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.901853 0.036575 24.6578 < 2.2e-16 ***
## log_inc_spend_pc 0.206031 0.061763 3.3358 0.0009605 ***
## log_ch_spend_pc -0.477033 0.080118 -5.9542 7.491e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#what might some good values be?
summary(senate.data[,c("log_inc_spend_pc", "log_ch_spend_pc")])

## log_inc_spend_pc log_ch_spend_pc
## Min. :0.0000 Min. :0.00000
## 1st Qu.:0.3812 1st Qu.:0.07201
## Median :0.5992 Median :0.27186
## Mean :0.6845 Mean :0.37834
## 3rd Qu.:0.8955 3rd Qu.:0.58021
## Max. :2.0350 Max. :1.79312
## NA's :71 NA's :76

X.star <- rbind(c(1, .6,.3), #"median" race
c(1, 2, 1.8), #big spending race
c(1, 0, 3)) #insane

X.star %*% lpm$coefficients

## [,1]
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## [1,] 0.8823616
## [2,] 0.4552555
## [3,] -0.5292466

hist(lpm$fitted.values, freq=FALSE, main="", xlab="Predictions")
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Finally how about a conflict example.

library(readstata13)
library(lmtest)
library(sandwich)
library(car)
library(margins)
library(nonnest2)
rm(list=ls())

cw.data <- read.dta13("Rcode/datasets/civwar.dta")

## Warning in read.dta13("Rcode/datasets/civwar.dta"):
## Factor codes of type double or float detected in variables
##
## region
##
## No labels have been assigned.
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## Set option 'nonint.factors = TRUE' to assign labels anyway.

# print(cbind(colnames(cw.data), attributes(cw.data)$var.labels))

# Let's start basic
model0 <- lm(onset~lgdpenl1, data=cw.data)
dim(model0$model)

## [1] 6373 2

signif(coeftest(model0, vcov=vcovHC),2)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0930 0.0130 7.0 3.8e-12 ***
## lgdpenl1 -0.0099 0.0016 -6.1 9.0e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(cw.data$lgdpenl1)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 3.871 6.835 7.598 7.651 8.408 11.108 237

predict(model0, newdata=data.frame(lgdpenl1=c(3.871,11.108)))

## 1 2
## 0.05449778 -0.01679099

#unlikely bounds
summary(model0$fitted.values)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.016796 0.009803 0.017781 0.017260 0.025299 0.054496

## Let's kick it up a notch
#regions: N Africa and ME is reference
model1 <- lm(onset~lpopl1+polity2l+lgdpenl1+

western+eeurop+lamerica+ssafrica+asia
+colbrit+colfra+lmtnest+ncontig+oil
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+ethfrac+relfrac,
data=cw.data)

signif(coeftest(model1, vcov=vcovHC), 2)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07300 0.02800 2.60 0.0094 **
## lpopl1 0.00340 0.00140 2.40 0.0170 *
## polity2l 0.00069 0.00033 2.10 0.0390 *
## lgdpenl1 -0.01100 0.00290 -3.70 0.0002 ***
## western -0.02600 0.00820 -3.20 0.0013 **
## eeurop -0.01100 0.01100 -1.00 0.3000
## lamerica -0.01400 0.00710 -1.90 0.0520 .
## ssafrica -0.00800 0.00890 -0.91 0.3700
## asia -0.00750 0.00900 -0.84 0.4000
## colbrit -0.00760 0.00550 -1.40 0.1700
## colfra -0.00910 0.00640 -1.40 0.1600
## lmtnest 0.00150 0.00130 1.20 0.2300
## ncontig 0.01600 0.00790 2.00 0.0470 *
## oil 0.01400 0.00730 1.90 0.0570 .
## ethfrac 0.00530 0.00940 0.57 0.5700
## relfrac 0.00600 0.00940 0.64 0.5200
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#' On average,
#' A 1% increase in (last years) GDP per captia decreases the probability
#' of civil war onset by about 0.011 percentage point
#' (-0.01090571/100) * 100
#' Interpret logged X (1%) | From prob scale to pp
#'
#' A 100% increase in (last years) Population increases
#' the probability of a civil war onset by about 0.0034 percentage points.
#' (0.00341965/100) * 100
#' Interpret logged X (1%) | From prob scale to pp
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#'
#' Comparing a true autocracy (polity -10) to a full democracy (+10)
#' We see an average increase of 1.37 percentage points
#' in the risk of civil conflict, holding all else equal
#' 0.00068536 * 20 *100
#' One unit increase | increase of 20 units | From prob scale to pp
#'
#' holding the other variables fixed

summary(model1$fitted.values)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.029148 0.006895 0.016271 0.017228 0.026047 0.082384

head(cw.data[names(which(model1$fitted.values<0) ), c("country", "year")])

## country year
## 56 CANADA 1945
## 57 CANADA 1946
## 58 CANADA 1947
## 59 CANADA 1948
## 60 CANADA 1949
## 61 CANADA 1950

#' Canada remains super unlikely to experience civil war onset.

#' Let's consider the issues of comparative theory testing
#' by considering non-nested models

# 1. Political Institutions: Democracy, GDP per capita, colonial status
# 2. Geographic Theory: Contiguity, mountains
# 3. Heterogeniety theories: Ethnic frac

#' In all three we'll include the region dummies and population
#' We will test these theories using first an "encompassing model" (which we have)
#' then model fit stats and finally a Vuong test

#' So far we can see that the ethnic heterogeneity is the least appealing
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model.political <- lm(onset~lpopl1
+polity2l+lgdpenl1
+western+eeurop+lamerica+ssafrica+asia
+colbrit+colfra
# +lmtnest+ncontig + oil
# +ethfrac +relfrac
,
data=model1$model)

model.geography <- lm(onset~lpopl1
# +polity2l+lgdpenl1+
+western+eeurop+lamerica+ssafrica+asia
# +colbrit+colfra
+lmtnest+ncontig+oil
# +ethfrac +relfrac
,
data=model1$model)

model.het <- lm(onset~lpopl1
# +polity2l+lgdpenl1+
+western+eeurop+lamerica+ssafrica+asia
# +colbrit+colfra
# +lmtnest+ncontig +oil
+ethfrac +relfrac
,
data=model1$model)

#' Remember we can use AIC, BIC, and adj R^2 to compare nested or non-nested models
#' So long as they have the same y and sample
#'
#' Can't use nested model tests here
which.min(c(AIC(model.political), AIC(model.geography), AIC(model.het)))

## [1] 1
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which.min(c(BIC(model.political), BIC(model.geography), BIC(model.het)))

## [1] 2

which.max(c(summary(model.political)$adj.r,
summary(model.geography)$adj.r,
summary(model.het)$adj.r))

## [1] 1

#' What get's us the closest? That's for Vuong tests to decide
vuongtest(model.political, model.geography) # pass the first test, but can't tell

##
## Model 1
## Class: lm
## Call: lm(formula = onset ~ lpopl1 + polity2l + lgdpenl1 + western + ...
##
## Model 2
## Class: lm
## Call: lm(formula = onset ~ lpopl1 + western + eeurop + lamerica + ssafrica + ...
##
## Variance test
## H0: Model 1 and Model 2 are indistinguishable
## H1: Model 1 and Model 2 are distinguishable
## w2 = 0.008, p = 0.00171
##
## Non-nested likelihood ratio test
## H0: Model fits are equal for the focal population
## H1A: Model 1 fits better than Model 2
## z = 0.380, p = 0.352
## H1B: Model 2 fits better than Model 1
## z = 0.380, p = 0.648

vuongtest(model.political, model.het) # pass the first test, political wins

##
## Model 1
## Class: lm
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## Call: lm(formula = onset ~ lpopl1 + polity2l + lgdpenl1 + western + ...
##
## Model 2
## Class: lm
## Call: lm(formula = onset ~ lpopl1 + western + eeurop + lamerica + ssafrica + ...
##
## Variance test
## H0: Model 1 and Model 2 are indistinguishable
## H1: Model 1 and Model 2 are distinguishable
## w2 = 0.005, p = 0.000416
##
## Non-nested likelihood ratio test
## H0: Model fits are equal for the focal population
## H1A: Model 1 fits better than Model 2
## z = 1.786, p = 0.0371
## H1B: Model 2 fits better than Model 1
## z = 1.786, p = 0.9629

vuongtest(model.geography, model.het) # pass the first test, geography wins

##
## Model 1
## Class: lm
## Call: lm(formula = onset ~ lpopl1 + western + eeurop + lamerica + ssafrica + ...
##
## Model 2
## Class: lm
## Call: lm(formula = onset ~ lpopl1 + western + eeurop + lamerica + ssafrica + ...
##
## Variance test
## H0: Model 1 and Model 2 are indistinguishable
## H1: Model 1 and Model 2 are distinguishable
## w2 = 0.003, p = 0.0415
##
## Non-nested likelihood ratio test
## H0: Model fits are equal for the focal population
## H1A: Model 1 fits better than Model 2
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## z = 1.660, p = 0.0485
## H1B: Model 2 fits better than Model 1
## z = 1.660, p = 0.9515

#' So we can probably feel good rejecting the heterogeneity theory.
#' We can't really tell if political institutions
#' or the geographic conditions matter more.
#' If we had to select a single theory it might be
#' the political institutions based on the AIC and adjusted R^2.
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6 Endogeniety and instrumental variables

So far we’ve focused on relaxing the assumptions of normality and homoskedasticity, while
also skirting around linearity. Now we will consider the problem of endogeneity, or situations
where E[εi|xi] 6= 0. There are three main ways in which this assumption is violated: omitted
variables, measurement error in the independent variables, and when the treatment and
outcome are simultaneously determined. First, we will demonstrate that all three of these
conditions can lead to endogeneity. Then we will consider how to tackle the problem.
Throughout we will show that E[εixi] 6= 0 which in turn implies that Ex[xi E[εi|xi]] 6= 0. In
turn this implies that for some xi E[εi|xi] 6= 0. Endogeneity is the bane of causal inference
with observational data, and so this is the launching point for most of what you’ll be worried
about for years to come.

6.1 Sources of endogeneity

6.1.1 Omited variables

We’ve briefly considered OVB before, but let’s recap. Suppose we wanted to identify the effect
that years of schooling has on wages, but further suppose that that wages are determined by
both years of schooling and an (unobserved) variable called intelligence. Additionally, assume
that years of schooling depends on intelligence. As such we have

wi = β0 + β1si + β2qi + εi︸ ︷︷ ︸
error

,

where wi denotes wages, si denotes years of schooling, and qi denotes intelligence. Note that
the population regression will satisfy the main assumptions that E[εi|si, qi] = 0. We have to
force the unconditional expected value of our new error term to be 0, so we add and subtract
β2 E[qi] from the above to get

wi = β0 + β2 E[qi]︸ ︷︷ ︸
constant

+β1si + β2(qi − E[qi]) + εi︸ ︷︷ ︸
error

= α0 + β1si + ui
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We need to know if ui = β2(qi − E[qi]) + εi is related to si, or to be precise if E[uisi] is 0 or
not. If they are unrelated we’re good to go, otherwise Assumption B3 is violated.

E[uisi] = E[(β2(qi − E[qi]) + εi)si]

= E[(β2(qi − E[qi]) + εi)si]

= E[β2(qi − E[qi])si + εisi]

= E[β2(qi − E[qi])si] + E[εisi]

= β2 E[(qi − E[qi])si] + 0

= β2 E[qisi − E[qi]si]

= β2 (E[qisi]− E[E[qi]si])

= β2 Cov(qi, si)

In order for OLS to be unbiased and consistent we need this to be 0. This will happen if either
β2 = 0 (there is no direct relationship between intelligence and wages) or if Cov(qi, si) = 0
schooling does not relate to intelligence. Omitted variable bias is thus a form of endogenity.
OLS is biased and inconsistent due to a failure of the exogeneity assumption. Recall that we
derived the bias earlier for the two variable case earlier and found

E[β̂1] = β1 + β2
sqs
s2
q

p→ β1 + β2
Cov(q, s)
Var(s) .

Note we can try to proxy for intelligence by using an imperfect measure q̃i. However, so
long as we there is still an aspect q∗i omitted from the new measure, we can make the same
argument for bias. This is why proxies are poor solutions to the problem (but sometimes a
poor solution is all you got).

• Additionally, this discussion points to the first two possible solutions to endogeneity

1. Experiments (lab/survey or natural/quasi). Randomization limits any concerns
about OVB

2. Use the right control variables (most common strategy; but obviously limited)

6.1.2 Measurement error

Another source of endogeneity is measurement error. We start with a model

yi = β0 + β1xi + εi
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where E[εi|xi] = 0. So far so good. But suppose we don’t observe xi, but instead we can only
observe a noisy proxy

x̃i = xi + νi,

where E[νi] = 0 and E[xiνi] = E[νiεi] = 0. Plugging in the noisy version we see

yi = β0 + β1(x̃i − νi) + εi

= β0 + β1x̃i + εi − β1νi

= β0 + β1x̃i + ui

Now note that in order for OLS to be unbiased we once again need E[x̃iui] to be zero.

E[x̃iui] = E[(xi + νi)(εi − β1νi)]

= E[xiεi − xiβ1νi + νiεi − β1ν
2
i ]

= E[xiεi]− β1 E[xiνi] + E[νiεi]− β1 E[ν2
i ]

= 0− 0 + 0− β1 E[ν2
i ]

= −β1 E[ν2
i ]

= −β1 Var[νi]

This will only equal 0 if β1 = 0 (there’s no direct effect of xi on yi ) or if νi is constant for all
i.

Can we say something about what that bias looks like? Let’s try it. We’re looking at a
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simple regression here (1 X and 1 y). so we can write

β̂1 =
1

N−1
∑N
i=1(x̃i − ¯̃xi)(yi − ȳ)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

=
1

N−1
∑N
i=1(xi − x̄i + νi − ν̄i)(β0 + β1xi + εi − β0 − β1x̄i − ε̄)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

=
1

N−1
∑N
i=1(xi − x̄i)(β1xi − β1x̄i + εi − ε̄)

1
N−1

∑N
i=1(x̃− ¯̃xi)2 +

1
N−1

∑N
i=1(νi − ν̄i)(β1xi − β1x̄i + εi − ε̄)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

=
1

N−1
∑N
i=1(xi − x̄i)(β1xi − β1x̄i)

1
N−1

∑N
i=1(x̃− ¯̃xi)2 +

1
N−1

∑N
i=1(xi − x̄i)(εi − ε̄)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

+
1

N−1
∑N
i=1(νi − ν̄i)(β1xi + β1x̄i + εi − ε̄)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

E[β̂1|X] =
1

N−1
∑N
i=1(xi − x̄i)(β1xi − β1x̄i)

1
N−1

∑N
i=1(x̃− ¯̃xi)2 +

1
N−1

∑N
i=1(xi − x̄i) E[(εi − ε̄i)]
1

N−1
∑N
i=1(x̃− ¯̃xi)2

+
1

N−1
∑N
i=1 E[(νi − ν̄i)](β1xi + β1x̄i + εi − ε̄i)

1
N−1

∑N
i=1(x̃− ¯̃xi)2

= s2
x

s2
x̃

β1

This makes the total bias of β̂1

bias(β̂1) = s2
x

s2
x̃

β1 − β1 = β1
s2
x − s2

x̃

s2
x̃

.

Note that this does not improve with sample size. We can show that s2
x̃

p→ σ2
x + σ2

ν and as
such

β̂1
p→ σ2

x

σ2
x + σ2

ν

β1.

Note that because σ2
(·) > 0 that this bias will always be toward 0 (attenuation bias).

Before moving on, let’s ask the obvious next question: what about measurement error in yi?
Suppose we have

y = Xβ + ε,

but the outcome we observed is measured with error, such that

ỹi = yi + νi.

263



Let E[ν|X] = 0 and consider the OLS estimate

β̂ = (X ′X)−1X ′ỹ

= (X ′X)−1X ′(y − ν)

= (X ′X)−1X ′y − (X ′X)−1X ′ν

= (X ′X)−1X ′Xβ + (X ′X)−1X ′ε− (X ′X)−1X ′ν

= β + (X ′X)−1X ′(ε− ν)

Note that ε − ν is a compound error term, but it still has expectation 0. So long as
E[εi − νi|xi] = 0, we’re good to go. Random error in the dependent variable just adds noise
to the model and increases the overall variance, but could be worse. OLS is still unbiased
and consistent.

6.1.3 Simultaneity

Another way we might find endogeneity is when X and y cause each other. Consider the
relationship between economic growth and civil war. We might imagine that growth does
not increase the likelihood of civil war but maybe civil war decreases growth. In this case
if we regressed civil war on growth we might find a negative and significant coefficient
estimate, despite there not being a real causal relationship of growth on civil war (instead we
accidentally pick up the negative effect of conflict on growth). This type of endogeneity is
a more concerning perhaps than OVB, because it can occur even if you have all the right
variables.

To tease this out, we might write a model that includes of both growth and conflict

wi = β0 + β1gi + β2xi + εi

gi = γ0 + γ1wi + γ2xi + νi.

Let’s put some structure in the sense that E[εi|xi] = E[νi|xi] = 0. We need E[εigi] = E[νiwi] =
0 in order for OLS to be consistent.

We can rewrite the above to be in “reduced form” which is to say that they are only in terms
of the exogenous variables.

wi = β0 + β1γ0

1− β1γ1
+ β1γ2 + β2

1− β1γ1
xi + εi + β1νi

1− β1γ1

gi = γ0 + γ1β0

1− β1γ1
+ γ1β2 + γ2

1− β1γ1
xi + νi + γ1εi

1− β1γ1
.
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How we can check the relevant expectations

E[νiwi] = E
[
νi

(
β0 + β1γ0

1− β1γ1
+ β1γ2 + β2

1− β1γ1
xi + εi + β1νi

1− β1γ1

)]

= E [νi]
β0 + β1γ0

1− β1γ1
+ E [νixi]

β1γ2 + β2

1− β1γ1
+ E

[
εiνi + β1ν

2
i

1− β1γ1

]

= 0 + 0 + E [εiνi] + β1 E [ν2
i ]

1− β1γ1

= E [εiνi]
1− β1γ1

+ β1
Var (νi)
1− β1γ1

E[εigi] = E [εiνi]
1− β1γ1

+ γ1
Var (εi)
1− β1γ1

Getting both of these to be 0 is a bit of a stretch. We could have both γ1 = 0, β1 = 0, and
E[εiνi] = 0. If all three of those hold then there is no relationship among our equations and
we’re back to ordinary OLS. If any of them hold, then one of these will be inconsistent. Or
we could let γ1 and β1 be free but have E[εiνi] be whatever value it needed to be to satisfy
these equations. This would be a very weird assumption.

Well maybe we could just fit the exogenous reduced form model

wi = β0 + β1γ0

1− β1γ1
+ β1γ2 + β2

1− β1γ1
xi + εi + β1νi

1− β1γ1

gi = γ + γ1β0

1− β1γ1
+ γ1β2 + γ2

1− β1γ1
xi + νi + γ1εi

1− β1γ1
.

This only contains exogenous xi and it has β1 and γ1 in it. Can we back out β1 from
these estimates? No we have too many pieces. Notice that we have 6 parameters to ID,
θ = (β0, β1, γ, β2, γ0, γ1, γ2), but only 4 pieces of information.

However, what if β2 = 0? Well then we have

wi = β0 + β1γ0

1− β1γ1
+ β1γ2

1− β1γ1
xi + εi + β1νi

1− β1γ1

gi = γ + γ1β0

1− β1γ1
+ γ2

1− β1γ1
xi + νi + γ1εi

1− β1γ1
.

Now we still have too many unknowns to back out everything, but. . . notice that

β1γ2

1− β1γ1
/

γ2

1− β1γ1
= β1.
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We can identify β1 from the ratio of the coefficients on xi from the two reduced form regressions.
HOW. COOL. IS. THAT? However, we would need another restriction in order to find γ.
Note that this restriction works because when β2 = 0 and γ2 6= 0 we have a variable xi that
effect growth (and thus has an indirect effect on civil war), but it has no direct effect on
civil war.

Here xi is an example of an instrumental variable. This will be a third strategy for
combating endogeneity. If we wanted to identify γ1 we would need another instrument:
something that effects civil war onset, but has no direct effect on growth. It only influences
conflict through its effect on growth.

There are other forms of endogeneity that you will certainly come across:

1. Non-random selection into the sample (People are not randomly assigned to run for
office or enter the work force)

2. Feedback or other dynamic effects
3. Attrition (non random exiting from the sample)
4. Strategic interaction among the participants

Note that in most cases, endogeneity can be thought of as a problem of inferring causation
from correlation. With the exception of measurement error, most of these setups are situations
where regressing yi on xi leads us to incorrectly conclude that observed correlation indicates
that xi causes yi (education cause wages, growth reduces the conflict risk, etc).

Two main methods exist for working with endogeneity concerns: structural solutions (model
the relationships that induce endogeneity using additional equations and structure) and
reduced form estimation based on instrumental variables (or another tool to remove the
endogeneity concerns like regression discontinuity or difference-in-differences, you’ll return to
these if you take causal inference). For the most part reduced form approaches dominate
modern empirical work and are inline with the scope of the course. We will focus on the
central tool for that: the method of instrumental variables.

6.2 2SLS

The main estimation framework for dealing with endogeneity is two-stage least squares (2SLS).
This approach is based on the idea that we will need 1 or more instruments Z for each
endogeneous variable in X. We will build a new set of assumptions here
Assumption C1 The DGP is linear: yi = β′xi + εi
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Assumption C2 The pairs (xi, εi) are independently and identicially distributed

Assumption C3 The instruments are exogeneous: E[εi|zi] = 0

Assumption C4 The instruments are relevant: rank(E[xiz′i]) ≥ dim(xi)

Assumption C5 The instruments are not redundant: rank(E[ziz′i]) = dim(zi)

Assumption C6 Other technical assumptions on various moments that allow for the law of
large numbers and the CLT

Note that exogenous variables in X (including the constant term) are able to instrument for
themselves. As such variables in X may also be in Z. Note that Assumption C4 also tells us
that dim(zi) ≥ dim(xi). To find β̂2SLS you can either do it all at once or you can do it as
two-steps (thus the name):

1. Regress all X on Z to get Γ̂ = (Z ′Z)−1Z ′X. Set X̂ = ZΓ̂
2. Regress y on X̂

Here X̂ is the part of X that “comes from” Z. Because Z is exogenous, but related to X, we
only include the exogenous part of X determined by Z. The 2SLS estimator then becomes

β̂2SLS = (X̂ ′X̂)−1X̂ ′y

= (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′y)

= (X ′HZX)−1(X ′HZy)

The second line is the “one-step” version, which is what you would actually use. The
idempotent matrix HZ = Z(Z ′Z)−1Z ′. In the special case where dim(zi) = dim(xi) (i.e., we
have one endogenous variable in X and one instrument for it in Z), we can get an easier
formula

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′y)

= (Z ′X)−1(Z ′Z)(X ′Z)−1(X ′Z)(Z ′Z)−1Z ′y

= (Z ′X)−1(Z ′Z)(Z ′Z)−1Z ′y

= (Z ′X)−1Z ′y

The 2SLS estimator is biased, but consistent. First, let’s rewrite the estimator

β̂2SLS = β +
(

1
N
X ′Z

( 1
N
Z ′Z

)−1 1
N
Z ′X

)−1 ( 1
N
X ′Z

( 1
N
Z ′Z

)−1 1
N
Z ′ε

)
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To see the consistency start with the follow LLN arguments for iid observations

1
N
X ′Z

p→ E[xiz′i]
1
N
Z ′X

p→ E[zix′i]( 1
N
Z ′Z

)−1
p→ E[ziz′i]−1 by C5 and CMT

1
N
Z ′ε

p→ E[ziεi] = 0 by C3

det
( 1
N
X ′Z

( 1
N
Z ′Z

) 1
N
Z ′X

)
p→ det

(
E[xiz′i] E[ziz′i]−1 E[x′izi]

)
> 0 by C5, C4, Slutsky, and CMT

All together this gives us
(

1
N
X ′Z

( 1
N
Z ′Z

)−1 1
N
Z ′X

)−1 ( 1
N
X ′Z

( 1
N
Z ′Z

)−1 1
N
Z ′ε

)
p→ 0

by Slutsky and the continuous mapping theorem, or

β̂2SLS
p→ β.

The intuition behind the bias comes from the fact than no instrument will be perfect in finite
samples so you get some endogeneity bias “slipping back in.” We will return to this in a
moment.
Property C1 Under Assumptions C1-C6, the 2SLS estimator exists for large enough N
and β̂N2SLS

p→ β.

We can consider the asymptotic distribution of
√
N(β̂N2SLS − β):

√
N(β̂N2SLS − β) =

(
1
N
X ′Z

( 1
N
Z ′Z

)−1 1
N
Z ′X

)−1 ( 1
N
X ′Z

( 1
N
Z ′Z

)−1
√
N

N
Z ′εi

)
,

where the CLT tells us
√
N

N
Z ′εi

d→ N(0,Var(ziεi)) = N(0,E[ε2
i ziz

′
i]).

Using the same large sample arguments as before we get,
Property C2 Under Assumptions C1-C6,

√
N(β̂N2SLS − β) d→ N(0, A−1BA−1)
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where

B = E[xiz′i] E[ziz′i]−1 E[ε2
i ziz

′
i]E[ziz′i]−1 E[zix′i]

A = E[xiz′i] E[ziz′i]−1 E[zix′i]

This gives us a full robust variance matrix of

âvar(β̂) = (X ′HZX)−1
[
X ′Z(Z ′Z)−1

(
N∑
i=1

ε̂2
i ziz

′
i

)
(Z ′Z)−1Z ′X

]
(X ′HZX)−1

If you want to make a homoskedasticity assumption (we haven’t yet) this simplifies, but
2SLS is only asymptotically valid, so why not use the asymptotic covariance matrix? Note
that when dim(z) = dim(x) (the same number of true instruments as endogenous variables
and letting each exogenous variable instrument itself), we can rearrange terms and let things
cancel. As such the estimated variance becomes:

√
N(β̂N2SLS − β) d→ N(0,E[zix′i]−1 E[ε2

i ziz
′
i] E[xiz′i]−1).

or
âvar(β̂) = (Z ′X)−1

(
N∑
i=1

ε̂2
i ziz

′
i

)
(X ′Z)−1

Which looks a lot like the ordinary sandwich estimator.

6.2.1 Weak instruments and the 2SLS

Story time: Angrist and Krueger (1991) is a very famous paper for perhaps the wrong
reasons. In the paper they want to estimate the effect that schooling has on wages. To avoid
endogeniety concerns they instrument for education using the quarter of the year that you’re
born in. Here’s the argument:

1. Children born earlier in the year will be enrolled in school “sooner.” These kids will
receive more education by the time they turn 16 and are allowed to dropout (relevance)

2. Quarter of birth is random so it should have no effect on wages outside of how much
schooling someone received (validity)

So far this makes a degree of sense, but the effect of birth quarter on schooling must be very
small (if any). This lack of a strong first-stage relationship makes it a weak instrument.
Weak instruments can lead to real problems in terms of both bias and variance in the 2SLS

269



estimates. Specifically, let’s consider the following model

yi = βxi + εi

xi = γ′zi + νi

For ease, we’ll only have a single endogenous regressor and let β0 = 0. The 2SLS estimator is
given by

β̂2sls = β + (x′HZx)−1(x′HZε)

β̂2sls − β = (x′HZx)−1 ((Zγ + ν)′HZε) First stage relationship

= (x′HZx)−1(γ′Z ′ε) Distribute

+ (x′HZx)−1(ν ′HZε) Note: Z ′HZ = Z ′

Now we have a problem. Unlike with OLS we can’t just take conditional expectations to
break up these terms. Specifically, X includes an error term so we would need to pass
the expectation operator into the inverse (which we can’t do, the inverse is a non-linear
function). What we’re going to do instead is take a first-order approximation. This approach
is sometimes called “group-wise” asymptotics. The premise is that it works by assuming that
the number of instruments in increasing with the sample size. This assumption maintains
the “weakness” of the instruments as N increase.

E[β̂2sls − β] ≈ (E[x′HZx])−1(E[γ′Z ′ε])

+ (E[x′HZx])−1(E[ν ′HZε])

≈ (E[x′HZx])−1(γ′0) By C3

+ (E[x′HZx])−1(E[ν ′HZε])

≈ (E[x′HZx])−1(E[ν ′HZε])

≈ (E[(Zγ + ν)′HZ(Zγ + ν)])−1(E[ν ′HZε])

≈ (E[γ′Z ′HZZγ] + E[ν ′HZν])−1(E[ν ′HZε])

≈ (E[γ′Z ′Zγ] + E[ν ′HZν])−1(E[ν ′HZε]).

To make exposition even easier we will assume homoskedasticity for ν and ε. Then we can
use arguments similar to what we did with Property B3:

E[ν ′HZν︸ ︷︷ ︸
1×1

] = E [tr (ν ′HZν)] = σ2
νtr(HZ) = σ2

νL.
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where L is the number of columns in Z. Similar trickery shows us that

E[ν ′HZε] = σενtr(HZ) = σενL.

As such
bias(β̂2sls) ≈ (E[γ′Z ′Zγ] + σ2

νL)−1σενL

Let’s multiply the left side by σ2
ν/σ

2
ν to get

bias(β̂2sls) ≈
(

E[γ′Z ′Zγ]/L
σ2
ν

+ 1
)−1

σεν
σ2
ν

Interestingly, the term
E[γ′Z ′Zγ]/L

σ2
ν

might look familiar to you. If we let A = IL, b = 0, then the F test for linear hypothesis that
γ = 0 is:

F = γ̂′(Z ′Z)γ̂/L
σ̂2
ν

.

GOLLY! Where does this take us?

E[β̂2sls]− β ≈
σεν
σ2
ν

(
E[γ′Z ′Zγ]/L

σ2
ν

+ 1
)−1

≈ σεν
σ2
ν

(F + 1)−1

≈ σεν
σ2
ν

1
F + 1

p→ σεν
σ2
ν

1
F + 1 .

What does this tell us? First, it shows us where the bias in 2SLS comes from: weak
instruments. Second, under ordinary asymptotics F →∞ as N increases and we obtain the
consistency of 2SLS. However, if γ = 0 then F = 0 and the 2SLS estimator converges to
β + σεν

σ2
ν
, which is also what OLS converges to in this case:

β̂OLS = Cov(yi, xi)
Var(xi)

= Cov(βxi + εi, xi)
Var(xi)

= β + Cov(εi, xi)
Var(xi)

= β + sεν
s2
ν

.

If γ is just small, then 2SLS will be biased towards OLS, but consistent, but it may take
a lot of observations to overcome this bias. Finally, if we add irrelevant instruments in an
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effort to get something, we make these problems worse as L increases, leading F to decrease.

We can think of 1/(1 + F ) as a measure of how biased the 2SLS estimates are towards OLS.
The larger F is the better we’re doing. In practice, checking this F test is often done by
conducting the linear hypothesis that coefficients on the instruments for the endogenous
regressors are 0 in the first stage regression (with robust standard errors if appropriate). We
didn’t derive this for heteroskedastic data, but it carries over the just identified case. In most
cases, F ≥ 10 is the long-running rule of thumb for a “good” place to be (new work suggests
that F ≥ 105 may be more accurate. . . ) Before we turn to a “real” application let’s see how
this solves the problems we considered above.

6.2.2 Omitted variables

Let’s return to the model where we consider wages as a function of schooling and intelligence
is an omitted variable

wi = β0 + β2 E[qi]︸ ︷︷ ︸
constant

+β1si + β2(qi − E[qi]) + εi︸ ︷︷ ︸
error

= α0 + β1si + ui

Suppose we have an instrument ki for si. As such we have xi = (1, si) and zi = (1, ki).
Assume that E[uizi] = 0 and that rank(E[xiz′i]) = 2. This means that ki is a good instrument
(valid and relevant). Let’s explore what this means for the relationships between ki, si, and
qi. We have:

0 = E[uizi] =
 E[ui]

E[(β2(qi − E[qi]) + εi)ki]


=
 0

E[(β2(qi − E[qi]) + εi)ki]


=
 0
β2 Cov(qi, ki)


Cov(qi, ki) = 0
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and

E[xizi] = E
1
si

 [1 ki]
]

=
 1 E[ki]

E[si] E[siki]


det(E[xizi]) = E[siki]− E[si] E[ki] = Cov(si, ki)

rank(E[xizi]) = 2 ⇐⇒ Cov(si, ki) 6= 0

Okay, what have we learned? We showed that when OVB is the concern an instrument ki is
a good choice if it is

1. Uncorrelated with the unobserved confounding variable(s) Cov(qi, ki) = 0 (validity)
2. Correlated with endogenous variable Cov(si, ki) 6= 0 (relevant)

Together this says we need to find a k such that it affects schooling but is unassociated with
intelligence (or any other omitted variables). As such it affect wages only through its affect
on schooling. Cost of schooling might be a candidate if want to control for intelligence, but
be careful to consider how it might relate to other unobserved confounders.

6.2.3 Measurement error

One cool factoid is that two bad measures of x can be used to instrument for each other.
Suppose we have

yi = β0 + β1xi + εi

where E[εi|xi] = 0. But suppose we don’t observe xi, but instead we can only have two noisy
measure

x̃i = xi + νi

x∗i = xi + ηi.

Plugging the first in, we want to see if we can use the second as an instrument

yi = β0 + β1(x̃i − νi) + εi

= β0 + β1x̃i + εi − β1νi

= β0 + β1x̃i + ui
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where E[νi] = E[ηi] = E[xiηi] = E[xiνi] = E[νiεi] = E[ηiεi] = E[νiηi] = 0. This buys us:

E[x∗iui] = E[x∗i (εi − β1νi)]

= E[(xi + ηi)(εi − β1νi)]

= E[xiεi]− β1 E[xiνi] + E[ηiεi]− β1 E[ηiνi]

= 0

This shows that x∗i is a valid instrument. Is it relevant?

Cov(x∗i , x̃i) = Cov(xi + ηi, xi + νi)

= Cov(xi, xi) + Cov(xi, ηi) + Cov(xi, νi) + Cov(νi, ηi)

= Var(xi)

> 0

So long as xi is not drawn from a degenerate distribution, this will be a valid instrument. Of
course, any other valid and relevant instrument (correlates with xi but only affects yi through
its effect on xi) will correct for measurement error, but this is a neat choice if available (Note:
you must have a second measure with error, you can’t use x̃ to instrument itself).

6.2.4 Simultaneity

We now return to the Civil War and Growth conundrum. We want to show how instruments
help us identify the parameters of interest in the structural equations

wi = β0 + β1gi + β2xi + β3ki + εi

gi = γ0 + γ1wi + γ2xi + γ3ri + νi.

Assume that only wi and gi are endogenous, such that E[εi] = E[εixi] = E[εiki] = E[εiri] =
E[νi] = E[νixi] = E[νiki] = E[νiri] = 0

The reduced form is now

wi = β0 + β1γ0

1− β1γ1
+ β1γ2 + β2

1− β1γ1
xi + β1γ3

1− β1γ1
ri + β3

1− β1γ1
ki + εi + β1νi

1− β1γ1

gi = γ0 + γ1β0

1− β1γ1
+ γ1β2 + γ2

1− β1γ1
xi + γ1β3

1− β1γ1
ki + γ3

1− β1γ1
ri + νi + γ1εi

1− β1γ1
.

Here we now have eight estimates and eight parameters. We can solve this system and back
out all the parameters from the reduced form regressions. We can do this because we have
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two instruments:

1. ri affects war only through growth
2. ki affect growth only through war

If we only have ri then we can identify β1 but not γ1 or vice-versa. In practice, you could
either regress both in reduced form and solve the estimates or use 2SLS on each equation
to estimate the parameters of interest directly. There are other methods for estimating the
system of equations as a pair (SUR or 3SLS), but these generally make bold efficiency claims
at the cost of unrealistic modelling assumptions, so we we will skip these.

A candidate for ri is rainfall (this is real paper). The argument is that in many developing
countries agriculture is the primary driver of growth. Rain affects agriculture affects growth;
the instrument is relevant. Miguel et al. 2014 argue that it can’t possibly affect conflict on
its own (and thus is valid). I’ll leave that up to you to decide, but new work by Scott, Timm,
and Florian shows that rainfall is generally problematic as an instrument because of concerns
about spatial correlation. Also rainfall has been used as an instrument for many things since
then, if we believe some of them then we lose all of them.

6.3 Applications

We will now consider an application from Gerber (1998). He wanted to know: What is the
effect of campaign spending on vote share? Note this is a case where we have some strong
unobserved confounding.

• Suppose that a candidate’s unobservable quality (charisma, speaking skills, etc) affect
vote share

• Suppose that high quality candidate raise more money
• Suppose that there is actually no relationship between spending and vote share

Qi

Si Vi
??

If we regress vote share on spending we might mistakenly conclude that spending is effective,
when in reality we are just capturing the effect of the omitted variable. An instrumental
variable approach might help us out here

We just need to find one that doesn’t also affect Q.
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Zi

Qi

Si Vi
??

library(readstata13)
library(lmtest)
library(sandwich)
library(car)
library(dplyr)
library(ivreg)

senate.data <- read.dta13("Rcode/datasets/senate_expanded.dta")

senate.data$inc_spend_capita <- senate.data$inc_spend /senate.data$st_pop
senate.data$ch_spend_capita <- senate.data$ch_spend / senate.data$st_pop
senate.data$log_inc_spend_capita <- log(1 + senate.data$inc_spend_capita)
senate.data$log_ch_spend_capita <- log(1 + senate.data$ch_spend_capita)
senate.data$ch_qual[senate.data$ch_qual ==5] <- 0 #fix a mistake

model.ols <- lm(inc_2p_share~log_inc_spend_capita + log_ch_spend_capita,
data=senate.data)

#We want to know if spending effects vote share, we can
#consider the following tests

## H_0: log_inc_spend_capita = 0 Does incumbent spending have an effect?
## H_0: log_ch_spend_capita = 0 Does challenger spending have an effect?
coeftest(model.ols, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.633282 0.010053 62.9932 < 2.2e-16 ***
## log_inc_spend_capita 0.076866 0.014430 5.3269 1.999e-07 ***

276



## log_ch_spend_capita -0.205049 0.016841 -12.1760 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# On average, a 1% increase in challenger spending
# is associated with a 0.21 percentage point
# decrease in incumbent party
# vote share, holding everything else constant
# (-0.205049/100) * 100
# Interpret logged X (1%) | From 0-1 scale to pp
###################################################
# On average, a 1% increase in incumbent spending
# is associated with a 0.08 percentage point
# decrease in incumbent party
# vote share, holding everything else constant
# (0.076866/100) * 100
# Interpret logged X (1%) | From 0-1 scale to pp

## Does spending have an effect overall?
## H_0: log_inc_spend_capita = log_ch_spend_capita = 0
linearHypothesis(model.ols, c("log_inc_spend_capita=0", "log_ch_spend_capita=0"),

vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita = 0
## log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 294
## 2 292 2 76.777 < 2.2e-16 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Are challenger and incumbent spending equally effective?
## H_0: log_inc_spend_capita + log_ch_spend_capita = 0
linearHypothesis(model.ols, c("log_inc_spend_capita+log_ch_spend_capita=0"),

vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita + log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 293
## 2 292 1 80.147 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## In this basic regression (no controls) we see that challenger
## spending is still more effective, but both are effective

# We have an effort to measure of challenger quality let's include that
# and some other controls
model.ols2 <- lm(inc_2p_share~log_inc_spend_capita + log_ch_spend_capita

+factor(ch_qual)+inc_tenure+st_uemp,
data=senate.data)

coeftest(model.ols2, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 0.65792887 0.01902152 34.5887 < 2.2e-16 ***
## log_inc_spend_capita 0.05683223 0.01534803 3.7029 0.0002557 ***
## log_ch_spend_capita -0.17249895 0.01646537 -10.4765 < 2.2e-16 ***
## factor(ch_qual)1 -0.02655789 0.01093663 -2.4283 0.0157847 *
## factor(ch_qual)2 -0.04630408 0.01514575 -3.0572 0.0024452 **
## factor(ch_qual)3 -0.05034232 0.01370930 -3.6721 0.0002870 ***
## factor(ch_qual)4 -0.05195259 0.01232827 -4.2141 3.366e-05 ***
## inc_tenure 0.00162089 0.00067379 2.4056 0.0167801 *
## st_uemp -0.00296628 0.00200365 -1.4804 0.1398565
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model.ols2,
c("log_inc_spend_capita=0", "log_ch_spend_capita=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita = 0
## log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 288
## 2 286 2 64.036 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model.ols2,
c("log_inc_spend_capita+log_ch_spend_capita=0"),
vcov=vcovHC)
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## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita + log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 287
## 2 286 1 77.351 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## In this second regression with controls we see that challenger
## spending is more effective, but both are still effective
## Effects are slightly smaller though

## Gerber instruments for incumbent and challenger spending using
# Challenger Wealth
# State population
# incumbent spending in the previous election.
## Let's try it with the first two.

# With ivreg you specify the formulas as
## y ~ X | Z
## outcome ~ exogenous + endogenous | exogenous + instruments
model.2sls <- ivreg(inc_2p_share~

log_inc_spend_capita + log_ch_spend_capita|
ch_wealthy+ st_pop,

data=senate.data,
x=T, y=T)

#Unlike lm, ivreg allows you to pop a robust covariance matrix into summary
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summary(model.2sls, vcov=vcovHC)

##
## Call:
## ivreg(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita |
## ch_wealthy + st_pop, data = senate.data, y = T, x = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.204309 -0.066126 0.001046 0.049266 0.403047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56409 0.01441 39.147 < 2e-16 ***
## log_inc_spend_capita 0.17092 0.02694 6.345 8.79e-10 ***
## log_ch_spend_capita -0.20001 0.04420 -4.525 8.90e-06 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments (log_inc_spend_capita) 2 283 25.89 4.74e-11 ***
## Weak instruments (log_ch_spend_capita) 2 283 21.79 1.58e-09 ***
## Wu-Hausman 2 281 11.79 1.21e-05 ***
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08465 on 283 degrees of freedom
## Multiple R-Squared: 0.2442, Adjusted R-squared: 0.2388
## Wald test: 20.17 on 2 and 283 DF, p-value: 6.445e-09

linearHypothesis(model.2sls,
c("log_inc_spend_capita=0", "log_ch_spend_capita=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
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## log_inc_spend_capita = 0
## log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita | ch_wealthy +
## st_pop
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 285
## 2 283 2 20.175 6.445e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model.2sls,
c("log_inc_spend_capita+log_ch_spend_capita=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita + log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita | ch_wealthy +
## st_pop
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 284
## 2 283 1 0.7958 0.3731

## Now things have changed?
compareCoefs(model.ols, model.2sls)

## Warning in compareCoefs(model.ols, model.2sls): models to be compared are of
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## different classes

## Calls:
## 1: lm(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita,
## data = senate.data)
## 2: ivreg(formula = inc_2p_share ~ log_inc_spend_capita +
## log_ch_spend_capita | ch_wealthy + st_pop, data = senate.data, y = T, x = T)
##
## Model 1 Model 2
## (Intercept) 0.63328 0.56409
## SE 0.00936 0.02034
##
## log_inc_spend_capita 0.0769 0.1709
## SE 0.0154 0.0380
##
## log_ch_spend_capita -0.2050 -0.2000
## SE 0.0162 0.0626
##

## Both are still effective, but the effects
## are nearly identical (big jump in the effect of inc spending)

# On average, a 1% increase in challenger spending
# is associated with a 0.20 percentage point
# decrease in incumbent party
# vote share, holding everything else constant
# (-0.2000/100) * 100
# Interpret logged X (1%) | From 0-1 scale to pp
###################################################
# On average, a 1% increase in incumbent spending
# is associated with a 0.17 percentage point
# decrease in incumbent party
# vote share, holding everything else constant
# (0.1709/100) * 100
# Interpret logged X (1%) | From 0-1 scale to pp
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## We should always check the "first stage" regression to see if we can
## find relevance
first.stage.ch <- lm(log_inc_spend_capita~ ch_wealthy+ st_pop,

data=model.2sls$model)
first.stage.inc <- lm(log_ch_spend_capita~ ch_wealthy+ st_pop,

data=model.2sls$model)
coeftest(first.stage.ch, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.5887e-01 3.4619e-02 24.8093 < 2.2e-16 ***
## ch_wealthy 1.8778e-02 5.0697e-02 0.3704 0.7114
## st_pop -3.3400e-08 4.6577e-09 -7.1710 6.516e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(first.stage.inc, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1839e-01 3.2842e-02 12.7393 < 2.2e-16 ***
## ch_wealthy 2.5888e-01 5.7743e-02 4.4834 1.069e-05 ***
## st_pop -1.4806e-08 3.5459e-09 -4.1754 3.964e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Check the joint test of the instruments
linearHypothesis(first.stage.ch,

c("ch_wealthy=0", "st_pop=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
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## ch_wealthy = 0
## st_pop = 0
##
## Model 1: restricted model
## Model 2: log_inc_spend_capita ~ ch_wealthy + st_pop
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 285
## 2 283 2 25.886 4.741e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(first.stage.inc,
c("ch_wealthy=0", "st_pop=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## ch_wealthy = 0
## st_pop = 0
##
## Model 1: restricted model
## Model 2: log_ch_spend_capita ~ ch_wealthy + st_pop
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 285
## 2 283 2 21.788 1.581e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(model.2sls, vcovHC)

##
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## Call:
## ivreg(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita |
## ch_wealthy + st_pop, data = senate.data, y = T, x = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.204309 -0.066126 0.001046 0.049266 0.403047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56409 0.01441 39.147 < 2e-16 ***
## log_inc_spend_capita 0.17092 0.02694 6.345 8.79e-10 ***
## log_ch_spend_capita -0.20001 0.04420 -4.525 8.90e-06 ***
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments (log_inc_spend_capita) 2 283 25.89 4.74e-11 ***
## Weak instruments (log_ch_spend_capita) 2 283 21.79 1.58e-09 ***
## Wu-Hausman 2 281 11.79 1.21e-05 ***
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08465 on 283 degrees of freedom
## Multiple R-Squared: 0.2442, Adjusted R-squared: 0.2388
## Wald test: 20.17 on 2 and 283 DF, p-value: 6.445e-09

## IV-REG provides some diagnostics for us:
#' 1. Weak instruments tests are the first stage Fs (want at least 10)
#' 2. Wu-Hausman is a test of similarity between the OLS and the
#' 2SLS estimates are.
#' If we can't reject the null that they are same then
#' that means that our instrument hasn't changed the results
#' from the possibly inconsistent OLS.
#' Another way to think about this:
#' If we reject then we have
#' evidence that X is endogenous and the 2SLS is helping.
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#' If we fail to reject then either:
#' X is actually exogenous or the instrument is too weak to make a diff.
#' 3. Sargan's test is only for over identified models.
#' You want to **not** reject here as the null is that all
#' instruments are valid: cor(epsilon, Z)=0.

## Here we find evidence that the instruments are relevant.
## Sadly you can never know about validity.
## You'll always have to argue that your instruments are valid

#ASIDE: See why they call it "Two-Stage"
second.stage <- lm(model.2sls$y~first.stage.ch$fitted.values+

first.stage.inc$fitted.values)
cbind(second.stage$coefficients,

model.2sls$coefficients)

## [,1] [,2]
## (Intercept) 0.5640934 0.5640934
## first.stage.ch$fitted.values 0.1709181 0.1709181
## first.stage.inc$fitted.values -0.2000134 -0.2000134

## Let's try a model with controls
model.2sls.full <- ivreg(inc_2p_share~

log_inc_spend_capita + log_ch_spend_capita
+factor(ch_qual)+inc_tenure+st_uemp|

ch_wealthy+ st_pop
+factor(ch_qual)+inc_tenure+st_uemp,
data=senate.data,
x=TRUE,y=TRUE)

summary(model.2sls.full, vcov=vcovHC)

##
## Call:
## ivreg(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita +
## factor(ch_qual) + inc_tenure + st_uemp | ch_wealthy + st_pop +
## factor(ch_qual) + inc_tenure + st_uemp, data = senate.data,
## y = TRUE, x = TRUE)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -0.201643 -0.050693 -0.002702 0.047004 0.358452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5973961 0.0234696 25.454 < 2e-16 ***
## log_inc_spend_capita 0.1630486 0.0299795 5.439 1.18e-07 ***
## log_ch_spend_capita -0.2376369 0.0391035 -6.077 4.04e-09 ***
## factor(ch_qual)1 -0.0241064 0.0125168 -1.926 0.05514 .
## factor(ch_qual)2 -0.0350977 0.0161891 -2.168 0.03101 *
## factor(ch_qual)3 -0.0481496 0.0161158 -2.988 0.00306 **
## factor(ch_qual)4 -0.0438525 0.0139455 -3.145 0.00184 **
## inc_tenure 0.0009106 0.0006520 1.397 0.16362
## st_uemp -0.0005050 0.0022878 -0.221 0.82547
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments (log_inc_spend_capita) 2 277 38.712 1.49e-15 ***
## Weak instruments (log_ch_spend_capita) 2 277 39.518 7.97e-16 ***
## Wu-Hausman 2 275 6.708 0.00143 **
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07813 on 277 degrees of freedom
## Multiple R-Squared: 0.3697, Adjusted R-squared: 0.3515
## Wald test: 17.45 on 8 and 277 DF, p-value: < 2.2e-16

linearHypothesis(model.2sls.full,
c("log_inc_spend_capita=0", "log_ch_spend_capita=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
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## log_inc_spend_capita = 0
## log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita + factor(ch_qual) +
## inc_tenure + st_uemp | ch_wealthy + st_pop + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 279
## 2 277 2 19.322 1.395e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model.2sls.full,
c("log_inc_spend_capita+log_ch_spend_capita=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## log_inc_spend_capita + log_ch_spend_capita = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita + factor(ch_qual) +
## inc_tenure + st_uemp | ch_wealthy + st_pop + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 278
## 2 277 1 8.4079 0.004035 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

289



## Now things are somewhat back to reduced form version
## We find that spending is effective on both sides
## We find that challenger spending is more effective
## BUT the effect of incumbent spending is much larger than reduced
## form suggested

model.ols2$coefficients[2] # A 1% increase in incumbent spending is associated

## log_inc_spend_capita
## 0.05683223

# with only a .06 percentage point gain in vote share holding other variables constant

model.2sls.full$coefficients[2] # A 1% increase in incumbent spending is associated

## log_inc_spend_capita
## 0.1630486

# with a 0.16 percentage point gain, holding all else equal
# We can make a causal argument if we believe the instruments
# If you take the causal inference class latter in your time here,
# you'll discuss this interpretation in more detail.

## Let's check the first stages with the fuller (but not Fuller; that's an IV joke) model
ivreg.data <- model.2sls.full$model
colnames(ivreg.data)[colnames(ivreg.data)=="factor(ch_qual)"] <- "ch_qual"
first.stage.inc.full <- lm(log_inc_spend_capita~

ch_wealthy+ st_pop
+factor(ch_qual)+inc_tenure+st_uemp,
data=ivreg.data, x=T)

first.stage.ch.full <- lm(log_ch_spend_capita~
ch_wealthy+ st_pop

+factor(ch_qual)+inc_tenure+st_uemp,
data=ivreg.data, x=T)

coeftest(first.stage.ch.full, vcov=vcovHC)

##
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## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3267e-01 6.7920e-02 7.8426 9.602e-14 ***
## ch_wealthy 3.7330e-01 6.1089e-02 6.1107 3.354e-09 ***
## st_pop -1.8939e-08 2.9563e-09 -6.4063 6.376e-10 ***
## factor(ch_qual)1 4.8560e-02 4.3358e-02 1.1200 0.26369
## factor(ch_qual)2 1.9098e-01 8.0541e-02 2.3711 0.01842 *
## factor(ch_qual)3 4.3483e-01 6.3821e-02 6.8132 5.938e-11 ***
## factor(ch_qual)4 3.5328e-01 6.1118e-02 5.7802 2.007e-08 ***
## inc_tenure -1.5646e-03 2.3523e-03 -0.6651 0.50652
## st_uemp -3.9387e-02 8.6037e-03 -4.5779 7.100e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(first.stage.inc.full, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0164e+00 7.6248e-02 13.3306 < 2.2e-16 ***
## ch_wealthy 1.0092e-01 4.8227e-02 2.0925 0.0373009 *
## st_pop -3.3933e-08 4.0639e-09 -8.3500 3.300e-15 ***
## factor(ch_qual)1 6.3122e-02 5.1035e-02 1.2368 0.2171934
## factor(ch_qual)2 7.6604e-02 8.0646e-02 0.9499 0.3429991
## factor(ch_qual)3 2.8242e-01 6.7532e-02 4.1820 3.880e-05 ***
## factor(ch_qual)4 1.8869e-01 5.6038e-02 3.3673 0.0008668 ***
## inc_tenure 1.9347e-03 2.6003e-03 0.7440 0.4574988
## st_uemp -4.6545e-02 8.9267e-03 -5.2142 3.618e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Check the joint test of the instruments
linearHypothesis(first.stage.inc.full,

c("ch_wealthy=0", "st_pop=0"),
vcov=vcovHC)
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## Linear hypothesis test
##
## Hypothesis:
## ch_wealthy = 0
## st_pop = 0
##
## Model 1: restricted model
## Model 2: log_inc_spend_capita ~ ch_wealthy + st_pop + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 279
## 2 277 2 38.712 1.495e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(first.stage.ch.full,
c("ch_wealthy=0", "st_pop=0"),
vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## ch_wealthy = 0
## st_pop = 0
##
## Model 1: restricted model
## Model 2: log_ch_spend_capita ~ ch_wealthy + st_pop + factor(ch_qual) +
## inc_tenure + st_uemp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 279
## 2 277 2 39.518 7.971e-16 ***

292



## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Check the reduced form
model.reduced <- lm(inc_2p_share~ ch_wealthy+ st_pop

+factor(ch_qual)+inc_tenure+st_uemp,
data=senate.data)

coeftest(model.reduced, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.3654e-01 1.9909e-02 31.9730 < 2.2e-16 ***
## ch_wealthy -7.2255e-02 1.6113e-02 -4.4844 1.072e-05 ***
## st_pop -1.0322e-09 7.7332e-10 -1.3348 0.183030
## factor(ch_qual)1 -2.5354e-02 1.2930e-02 -1.9608 0.050903 .
## factor(ch_qual)2 -6.7990e-02 2.1112e-02 -3.2205 0.001432 **
## factor(ch_qual)3 -1.0543e-01 1.5184e-02 -6.9437 2.717e-11 ***
## factor(ch_qual)4 -9.7038e-02 1.4656e-02 -6.6212 1.844e-10 ***
## inc_tenure 1.5978e-03 6.9047e-04 2.3141 0.021392 *
## st_uemp 1.2657e-03 2.4603e-03 0.5144 0.607359
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Another type of Reduced form (Wu-Hausman)
model.wu <- lm(inc_2p_share~ log_inc_spend_capita+ log_ch_spend_capita

+factor(ch_qual)+inc_tenure+st_uemp
+first.stage.inc.full$residuals

+first.stage.ch.full$residuals,
data=ivreg.data)

# What are these residuals? They're the part of the endogeneous regressors with the
# variance from the instrument removed (i.e., just the endogenous parts)
# So here we control for endogeneity using these residuals
# Wu-Hausman checks if these are significant. If so then evidence of endogeneity
# If not; than the other estimates should match the OLS estimates
linearHypothesis(model.wu,

c("first.stage.inc.full$residuals=0", "first.stage.ch.full$residuals=0"),

293



vcov=vcovHC)

## Linear hypothesis test
##
## Hypothesis:
## first.stage.inc.full$residuals = 0
## first.stage.ch.full$residuals = 0
##
## Model 1: restricted model
## Model 2: inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita + factor(ch_qual) +
## inc_tenure + st_uemp + first.stage.inc.full$residuals + first.stage.ch.full$residuals
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 277
## 2 275 2 6.7079 0.001431 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##############Over-Identified example####################################
## I want to add the total amount spend by all sides
## First we need to generate our new instrument
## I'm going to use dplyr's lag function and data manipulation tools
## because it's easier than figuring it out one state at a time
##################Aside to generate a "lag" ###########################
senate.data <- senate.data %>%

arrange(st_name, year) %>%
group_by(st_name) %>%
mutate(ll_total_spending_captia = log(lag((ch_spend+inc_spend)/st_pop))) %>%
ungroup()

#########################################################################

model.2sls.over <- ivreg(inc_2p_share~
log_inc_spend_capita + log_ch_spend_capita

+factor(ch_qual)+inc_tenure+st_uemp|
ch_wealthy+ st_pop +ll_total_spending_captia
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+factor(ch_qual)+inc_tenure+st_uemp,
data=senate.data, x=T, y=T)

summary(model.2sls.over, vcov=vcovHC)

##
## Call:
## ivreg(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita +
## factor(ch_qual) + inc_tenure + st_uemp | ch_wealthy + st_pop +
## ll_total_spending_captia + factor(ch_qual) + inc_tenure +
## st_uemp, data = senate.data, y = T, x = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21473 -0.05286 -0.00016 0.04456 0.26800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6059085 0.0285627 21.213 < 2e-16 ***
## log_inc_spend_capita 0.1957676 0.0365430 5.357 2.44e-07 ***
## log_ch_spend_capita -0.3076223 0.0462674 -6.649 3.08e-10 ***
## factor(ch_qual)1 -0.0189750 0.0160959 -1.179 0.2399
## factor(ch_qual)2 -0.0134656 0.0212452 -0.634 0.5270
## factor(ch_qual)3 -0.0090129 0.0231686 -0.389 0.6977
## factor(ch_qual)4 -0.0198663 0.0197072 -1.008 0.3147
## inc_tenure 0.0011473 0.0007464 1.537 0.1259
## st_uemp -0.0047359 0.0028343 -1.671 0.0964 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments (log_inc_spend_capita) 3 188 31.730 < 2e-16 ***
## Weak instruments (log_ch_spend_capita) 3 188 25.973 4.21e-14 ***
## Wu-Hausman 2 187 18.966 3.17e-08 ***
## Sargan 1 NA 0.708 0.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Residual standard error: 0.08288 on 189 degrees of freedom
## Multiple R-Squared: 0.29, Adjusted R-squared: 0.2599
## Wald test: 14.67 on 8 and 189 DF, p-value: < 2.2e-16

# check that Sargin test, we fail to reject the null of valid instruments
# this is a good thing

# check the reduced form too
model.reduced.over<- lm(inc_2p_share~ ch_wealthy+ st_pop +ll_total_spending_captia

+factor(ch_qual)+inc_tenure+st_uemp,
data=senate.data)

coeftest(model.reduced.over, vcov=vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6578e-01 2.3281e-02 28.5982 < 2.2e-16 ***
## ch_wealthy -1.0379e-01 2.0201e-02 -5.1380 6.917e-07 ***
## st_pop -1.0314e-09 1.0538e-09 -0.9787 0.32897
## ll_total_spending_captia 1.2392e-03 7.7499e-03 0.1599 0.87313
## factor(ch_qual)1 -3.4579e-02 1.4777e-02 -2.3401 0.02033 *
## factor(ch_qual)2 -8.2156e-02 2.6487e-02 -3.1018 0.00222 **
## factor(ch_qual)3 -1.1320e-01 1.7415e-02 -6.5002 7.020e-10 ***
## factor(ch_qual)4 -1.1303e-01 1.6351e-02 -6.9125 7.195e-11 ***
## inc_tenure 1.6468e-03 7.1245e-04 2.3114 0.02190 *
## st_uemp -1.6670e-03 2.9317e-03 -0.5686 0.57029
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let us now briefly consider the validity of the instruments. For challenger wealth to be
relevant and valid it must influence spending but only influence vote share through spending.
The former makes sense to me, after all challengers who are wealthy can spend their own
money so their spending rises and incumbents rise to match it (this relationship was fairly
strong in the first stage for challenger spending and sorta strong for incumbent spending).
The latter is trickier, does wealth affect vote share outside of money? Wealth might correlate
with other components of quality that aren’t captured in the dummies. After all wealthy
people might just be seen as “winners” which can affect votes beyond the spending effect.
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Regarding state population it must be that it affects per capita spending but only affects vote
share through its affect on spending. The argument for its useful is that there is evidence that
per capita spending is lower in more populous states (relevance) and that being in a small
state attracts outside investment (people see their money as more impactful), which is then
rolled into spending and into votes. However, what if it’s also easier to just do door-to-door
canvasing in small states? Iowa and New Hampshire go first in presidential races because
their smallness is seen as leveling the playing field for less wealthy candidates and as such
population may influence a candidates ability to drum up votes the old-fashioned way.

What about the amount spent in the previous race? To be relevant and valid it must be
that this affects current spending but only affects vote share through its affect on spending.
Relevance makes sense to me, but validity? What do you think?

Overall final advice:

1. The best thing to do is to just use the best instruments you have with just identified
2SLS (dim(zi) = dim(xi). Just identified 2SLS has very good properties even under
slight weakness.

2. Check the first stages on everything. You probably want the F test (with robust
standard errors if appropriate) on the instruments to be at least 10 to proceed with
2SLS. Otherwise you should look for a new instrument, or you can look up methods
that are more robust to weak instruments.

3. If you are overidentified, check the 2SLS against the LIML (see next section). If there
are big differences you might have a problem with weakness.

4. Always check your reduced form model using OLS. If the relationship you expect for
your instrument doesn’t appear in reduced form, it might not be a good choice.

6.4 Bonus Topic: Working with many weak instruments: Limited
Information Maximum Likelihood

If you have many weak instruments you may want to consider using limited information
maximum likelihood (LIML). In the just identified case these will be exactly the same as
2SLS, but in the over identified case LIML is more robust to weak instruments. The LIML
has a closed form solution based where

β̂LIML = [X ′ (I − kMZ)X]−1
X ′ (I − kMZ) y.

297



Note that MZ is the first stage “residual maker” (I −HZ). This format is called a k class
estimator.
When k = 1 we have 2SLS. For LIML we first partition X =

[
X1 X2

]
where X1 are

exogenous and X2 are engodenous, then set k to the minimum eigenvalue of

A′
(
Ỹ ′MX1Ỹ

)
A,

where
Ỹ =

[
y X2

]
A =

(
Ỹ ′MZ Ỹ

)−1/2

I provide R code online to handle this for you.

## Picking up from the over identified case above
source("limlfit.r")

# We can use the 2SLS fit to get the data we want
X <- model.2sls.over$x$regressors
Z <- model.2sls.over$x$instruments
y <- model.2sls.over$y
liml.out <- liml.fit(X1=X[, -c(2:3)], #Exogenous X

X2=X[,2:3], #Endogenous X
Z=Z, #Instruments
y=y, #outcome
vcov = "robust") #robust to heteroskedasticity and weak instruments

signif(liml.out$coef.table,2)

## liml.est se.liml z.tests p.val
## (Intercept) 0.6000 0.02900 21.00 5.3e-95
## log_inc_spend_capita 0.2000 0.04400 4.50 5.4e-06
## log_ch_spend_capita -0.3100 0.06100 -5.10 4.0e-07
## factor(ch_qual)1 -0.0190 0.01600 -1.20 2.4e-01
## factor(ch_qual)2 -0.0130 0.02200 -0.59 5.6e-01
## factor(ch_qual)3 -0.0081 0.02700 -0.30 7.6e-01
## factor(ch_qual)4 -0.0190 0.02300 -0.84 4.0e-01
## inc_tenure 0.0011 0.00073 1.60 1.2e-01
## st_uemp -0.0047 0.00290 -1.70 9.8e-02
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liml.out$k

## [1] 1.003567

# k is pretty close to 1 that's a good sign for these instruments
# this means that LIML and 2SLS mostly agree
# When they disagree that can be a sign of weak instruments

#With the just identified case LIML and 2SLS are always identical
X <- model.2sls.full$x$regressors
Z <- model.2sls.full$x$instruments
y <- model.2sls.full$y
liml.just <- liml.fit(X1=X[, -c(2:3)], #Exogenous X

X2=X[,2:3], #Endogenous X
Z=Z, #Instruments
y=y, #outcome
vcov = "robust") #robust to heteroskedasticity and weak instruments

signif(liml.just$coef.table,2)

## liml.est se.liml z.tests p.val
## (Intercept) 0.60000 0.02400 25.00 4.5e-139
## log_inc_spend_capita 0.16000 0.03400 4.80 1.4e-06
## log_ch_spend_capita -0.24000 0.04600 -5.20 2.2e-07
## factor(ch_qual)1 -0.02400 0.01200 -1.90 5.3e-02
## factor(ch_qual)2 -0.03500 0.01600 -2.20 2.5e-02
## factor(ch_qual)3 -0.04800 0.01700 -2.80 4.4e-03
## factor(ch_qual)4 -0.04400 0.01500 -3.00 2.8e-03
## inc_tenure 0.00091 0.00065 1.40 1.6e-01
## st_uemp -0.00050 0.00230 -0.22 8.2e-01

liml.just$k #exactly 1 when just identified

## [1] 1

signif(coeftest(model.2sls.full, vcov=vcovHC),2)

##
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## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.60000 0.02300 25.00 < 2e-16 ***
## log_inc_spend_capita 0.16000 0.03000 5.40 1.2e-07 ***
## log_ch_spend_capita -0.24000 0.03900 -6.10 4.0e-09 ***
## factor(ch_qual)1 -0.02400 0.01300 -1.90 0.0550 .
## factor(ch_qual)2 -0.03500 0.01600 -2.20 0.0310 *
## factor(ch_qual)3 -0.04800 0.01600 -3.00 0.0031 **
## factor(ch_qual)4 -0.04400 0.01400 -3.10 0.0018 **
## inc_tenure 0.00091 0.00065 1.40 0.1600
## st_uemp -0.00050 0.00230 -0.22 0.8300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.5 Bonus Topic: Moment estimators for instrumental variables

A third way to consider the instrumental variable problem is with a (generalized) method of
moments estimator. This approach can lead to efficiency gains over the the above. Recall from
math camp, that the method of moments works by equating population moments to sample
moments. Suppose that we have data y that is drawn from unknown normal distribution
with parameters θ. We define the rth moment of y as

µk(θ) = E
[
yk
]
.

For a sample of size N we can build empirical moments as

µ̂k(θ) = 1
N

N∑
i=1

yki .

The method of moments estimates θ by equating these sample moments to population
moments. In this case we need as many sample moments as we have empirical moments. Let
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θ = (µ, σ2) then we need the first two population and the first two empirical moments:

µ1(θ) = E[y] = µ µ̂1(θ) = 1
N

N∑
i=1

yi

µ2(θ) = E[y2] = Var(y) + E[y]2 = σ2 + µ2 µ̂2(θ) = 1
N

N∑
i=1

y2
i .

To find θ̂MoM we set these equal and solve

µ̂MoM = 1
N

N∑
i=1

yi

σ̂2
MoM = 1

N

N∑
i=1

(yi − µ)2.

We can make this a little more formal. Let g(xi, yi; β) be an objective function that takes in
data (xi, yi) and a guess at β and measures how close the population moments to the sample
moments are for this value of β. The population version of our conditions E[g(xi, yi; β)] = 0
will hold only if we guess the true β (for exposition call it β∗ for the moment). For the linear
model, we can use the moment condition E[xiεi] = 0, this makes g:

g(xi, yi; β) = xi(yi − x′iβ)− E[xiεi]

= xi(yi − x′iβ)

We then find the expectation

E[g(xi, yi; β)] = E[xi(yi − x′iβ)] = 0

= Ex[E[xi(yi − x′iβ)|xi]]

= Ex[xi E[yi|xi]]− E[xix′i]β

= E[xix′iβ∗]− E[xix′i]β

= E[xix′i]β∗ − E[xix′i]β

= E[xix′i](β∗ − β)

Here, the first line is the population equivilent of the OLS first order conditions from way
back when. Additionally, if E[xix′i] has full rank then E[g(xi, yi; β)] = 0 only if β = β∗. This
tells us that these moment conditions will identify the parameters only if E[xix′i] has full
rank.

Once we have found g then the GMM estimator is defined as value of β that satisfies the
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sample version of the population moments:

1
N

N∑
i=1

g(xi, yi; β) = 0

which is the sample version of our E[g(xi, yi; β)]. Again for OLS this becomes

1
N

N∑
i=1

g(xi, yi; β) = 0

1
N

N∑
i=1

xi(yi − x′iβ) = 0

β̂MoM =
(

1
N

N∑
i=1

xix
′
i

)−1 1
N

N∑
i=1

xiyi

β̂MoM = β̂OLS

OLS is the MoM. Any MLE can also be written as a moment problem where the moments
are the FOC.

g(xi, yi; θ) = Dθ log(L(θ;xi, yi))

With regular MoM we had as many moments as parameters ( OLS is exactly identified
dim(g(xi, yi; β)) = K = dim(β)). With generalized MoM (GMM) we need to have at least as
many moments as parameters, but we can have more dim(g(xi, yi; θ)) ≥ dim(θ).

The GMM estimator is defined as

θ̂GMM = argmin
θ

(
1
N

N∑
i=1

g(xi, yi; θ)
)
W

(
1
N

N∑
i=1

g(xi, yi; θ)
)
.

Here W is a positive definite weighting matrix. For example, let

yi = β′xi + εi

E[εi|zi] = 0

g(xi, yi, zi; β) = zi(yi − β′xi)

W =
(

1
N

N∑
i=1

ziz
′
i

)−1

.
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Then we have
E[g(xi, yi, zi; β)] = Ez[E[g(xi, yi, zi; β)|zi]]

= Ez[E[zi(yi − β′xi)|zi]]

= Ez[E[zi(β∗′xi + εi − β′xi)|zi]]

= Ez[E[zix′iβ∗ + εi − zix′iβ|zi]]

= Ez[E[zix′iβ∗ − zix′iβ|zi] + E[ziεi|zi]]

= Ez[E[zix′i|zi](β∗ − β)

= E[zix′i](β∗ − β) = 0

This gives us our identification condition. If the rank (E[zix′i]) ≥ dim(β) then this will only
equal 0 if β = β∗.

Okay, let’s plug this into the GMM estimator

β̂GMM = argmin
β

(
1
N

N∑
i=1

zi(yi − β′xi)
)(

1
N

N∑
i=1

ziz
′
i

)−1 ( 1
N

N∑
i=1

zi(yi − β′xi)
)
.

We can take the FOC to see (trust me)

0 =
(

1
N

N∑
i=1

ziz
′
i

)−1 ( 1
N

N∑
i=1

zix
′
i

)(
1
N

N∑
i=1

zi(yi − β̂′GMMxi)
)
.

Solving for β̂GMM

β̂GMM =
( 1

N

N∑
i=1

zix
′
i

)(
1
N

N∑
i=1

ziz
′
i

)−1 ( 1
N

N∑
i=1

zix
′
i

)−1 ( 1
N

N∑
i=1

zix
′
i

)(
1
N

N∑
i=1

ziz
′
i

)−1 ( 1
N

N∑
i=1

ziyi

) .
This is the 2SLS estimator! Why have we done this? We can get efficiency gains over 2SLS
by choosing different values of W . If can be shown that the most efficient estimates can be
gained by

W = Var(g(·))−1.
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In this case (assuming homoskedasticity) that becomes

Var(g(xi, yi, zi; β)) = Var(ziyi − zix′iβ)

= Var(zix′iβ + ziεi − zix′iβ)

= Var(ziεi)

= σ2
ε E(ziz′i)

≈ 1
N
σ̂2
εZ
′Z

W =
[ 1
N
σ̂2
εZ
′Z
]−1

If homoskedasticity doesn’t suit our data, this becomes the robust version

W = Var(ziεi)−1

Ŵ =
[

1
N

N∑
i=1

ε̂2
i ziz

′
i

]−1

.

You can use the 2SLS estimates for ε̂i because they are consistent (if inefficient).

library(gmm)
model.gmm <- gmm(inc_2p_share~

log_inc_spend_capita + log_ch_spend_capita
+factor(ch_qual)+inc_tenure+st_uemp,
~ ch_wealthy+ st_pop +ll_total_spending_captia
+factor(ch_qual)+inc_tenure+st_uemp,
vcov="HAC", data=senate.data,
model=T, X=T, Y=T)

## Warning in getDat(object$g, object$x, data = object$data): There are missing
## values. Associated observations have been removed

summary(model.gmm)

##
## Call:
## gmm(g = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita +
## factor(ch_qual) + inc_tenure + st_uemp, x = ~ch_wealthy +
## st_pop + ll_total_spending_captia + factor(ch_qual) + inc_tenure +
## st_uemp, vcov = "HAC", model = T, X = T, Y = T, data = senate.data)
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##
##
## Method: twoStep
##
## Kernel: Quadratic Spectral(with bw = 0.9253 )
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9677e-01 2.6030e-02 2.2926e+01 2.5348e-116
## log_inc_spend_capita 2.0882e-01 3.6319e-02 5.7496e+00 8.9469e-09
## log_ch_spend_capita -3.1810e-01 4.2720e-02 -7.4462e+00 9.6040e-14
## factor(ch_qual)1 -2.1241e-02 1.2899e-02 -1.6468e+00 9.9603e-02
## factor(ch_qual)2 -1.3847e-02 1.9445e-02 -7.1212e-01 4.7639e-01
## factor(ch_qual)3 -1.0653e-02 1.9635e-02 -5.4255e-01 5.8744e-01
## factor(ch_qual)4 -1.8675e-02 1.8097e-02 -1.0319e+00 3.0210e-01
## inc_tenure 1.0945e-03 8.8314e-04 1.2394e+00 2.1521e-01
## st_uemp -3.8998e-03 2.6353e-03 -1.4799e+00 1.3891e-01
##
## J-Test: degrees of freedom is 1
## J-test P-value
## Test E(g)=0: 1.00808 0.31536
##
## Initial values of the coefficients
## (Intercept) log_inc_spend_capita log_ch_spend_capita
## 0.605908450 0.195767593 -0.307622338
## factor(ch_qual)1 factor(ch_qual)2 factor(ch_qual)3
## -0.018975009 -0.013465599 -0.009012941
## factor(ch_qual)4 inc_tenure st_uemp
## -0.019866276 0.001147343 -0.004735887

summary(model.2sls.over, vcov=vcovHC)

##
## Call:
## ivreg(formula = inc_2p_share ~ log_inc_spend_capita + log_ch_spend_capita +
## factor(ch_qual) + inc_tenure + st_uemp | ch_wealthy + st_pop +
## ll_total_spending_captia + factor(ch_qual) + inc_tenure +
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## st_uemp, data = senate.data, y = T, x = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21473 -0.05286 -0.00016 0.04456 0.26800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6059085 0.0285627 21.213 < 2e-16 ***
## log_inc_spend_capita 0.1957676 0.0365430 5.357 2.44e-07 ***
## log_ch_spend_capita -0.3076223 0.0462674 -6.649 3.08e-10 ***
## factor(ch_qual)1 -0.0189750 0.0160959 -1.179 0.2399
## factor(ch_qual)2 -0.0134656 0.0212452 -0.634 0.5270
## factor(ch_qual)3 -0.0090129 0.0231686 -0.389 0.6977
## factor(ch_qual)4 -0.0198663 0.0197072 -1.008 0.3147
## inc_tenure 0.0011473 0.0007464 1.537 0.1259
## st_uemp -0.0047359 0.0028343 -1.671 0.0964 .
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments (log_inc_spend_capita) 3 188 31.730 < 2e-16 ***
## Weak instruments (log_ch_spend_capita) 3 188 25.973 4.21e-14 ***
## Wu-Hausman 2 187 18.966 3.17e-08 ***
## Sargan 1 NA 0.708 0.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08288 on 189 degrees of freedom
## Multiple R-Squared: 0.29, Adjusted R-squared: 0.2599
## Wald test: 14.67 on 8 and 189 DF, p-value: < 2.2e-16

signif(liml.out$coef.table,2)

## liml.est se.liml z.tests p.val
## (Intercept) 0.6000 0.02900 21.00 5.3e-95
## log_inc_spend_capita 0.2000 0.04400 4.50 5.4e-06
## log_ch_spend_capita -0.3100 0.06100 -5.10 4.0e-07
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## factor(ch_qual)1 -0.0190 0.01600 -1.20 2.4e-01
## factor(ch_qual)2 -0.0130 0.02200 -0.59 5.6e-01
## factor(ch_qual)3 -0.0081 0.02700 -0.30 7.6e-01
## factor(ch_qual)4 -0.0190 0.02300 -0.84 4.0e-01
## inc_tenure 0.0011 0.00073 1.60 1.2e-01
## st_uemp -0.0047 0.00290 -1.70 9.8e-02
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7 Time series (the quick and dirty)

Here we will very briefly consider OLS with dependent observations in the hope that it is
helpful to your future. With time series data we will rewrite our assumptions
Assumption D1 The data generating process is yt = β′xt + εt.

Note that here we may find that individual covariates xt are possibly correlated over time and
we may want to include lagged values of covariates xt−1 or the dependent variable yt−1. As
such the independence of observations (xt, εt) will almost never hold (Assumption B2 is out
of play). This is problematic for us as we used B2 to help us get to unbiasedness, consistency,
and asymptotic normality, so now what? We will start with the easiest situation.
Assumption D2 (Strict exogeneity) E[εt|X] = 0

Strict exogeneity says that εt is independent of all past, present, and future values of X. This
assumption states that even if neither X nor εt are iid, εt is at least independent of all the
variables in X at all times. With this we get our first property
Property D1 OLS is unbiased if D1-D2 hold.

In this case, the only concern is that the errors are “naturally” correlated over time (i.e., there
is no omitted variable causing the correlation) then OLS is unbiased but inefficient under
strict exogeneity. There are FGLS estimators that can be used to model the autocorrelation
in εt (e.g., Prais-Winsten), but I don’t think it’s the best use of our time. Instead, let’s focus
on what we can do with OLS.

First, how do we know if we have autocorrelated errors? Like with heteroskedasticity, we
will use the sample residuals from OLS and look for correlation. Recall that correlation is
covariance divided by the product of the standard deviations.

ε̂t = yt − β̂′xt

ρ̂ε(`) =
1

T−1
∑T
t=1+` ε̂tε̂t−`

1
T−1

∑T
t=1 ε̂

2
t

The function ρ̂ε(`) returns the estimated correlation between εt and it’s `th lag. The acf
function in R does this for us and shows the correlation between ε̂t and its first p lags. For a
more formal test, the Breusch-Godfrey test is the go to test for this. The procedure will look
familiar

1. Regress yt on xt using OLS. Save the residuals ε̂i.
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2. Fit an AR(p) model (p lags of ε̂i) by fitting the model

ε̂t = α′xt +
p∑
`=1

ρ`ε̂t−` + ut,

using OLS.
3. Conduct a test on ρ1 = ρ2 = . . . = ρp = 0. Like the White/BP test, this test statistic

is TR2 ∼ χ2
p (asymptotically) under the null. Usually, we just check the 1st lag

p = 1. Using both the ACF plot and Breusch-Godfrey you can a good sense of the
autocorrelation in the residuals.

However, we often think that autocorrelation is rarely just a “feature” of most time series
data, and assumption D2 will fail in many interesting cases. Instead, it is often thought that
residual correlation reflects an important omitted variable and should be reduced as much
as possible by using lags of yt and xt. Strict exogeneity fails if the DGP includes previous
values of yt within the independent variables xt. To see this note that

yt = β′zt + γyt−1 + εt

= β′zt + (β′zt−1 + εt−1)︸ ︷︷ ︸
yt−1

γ + εt

Here εt−1 is included in xt = (zt, yt−1), so that clearly violates strict exogeneity: OLS is
biased and inefficient.

Good news, we can still get consistency of OLS without D2. To do this we need to define
two new concepts stationary and ergodic. Informally, we say a series is stationary if its
distribution is the same over any subseries. In other words the true mean, variance, and
relative covariances are constant no matter what slice you look at of the series.

A series is ergodic (again, informal definition) if for large enough j, yt and yt−j are nearly
independent. One example of stationary and ergodic process is an AR(1):

yt = ρyt−1 + εt,

for |ρ| < 1, E[εt] = 0. Here, for any t we will see that yt and yt−1 are correlated, while yt and
yt−2 will be less correlated, and so on. This series will move around E[yt], but that true mean
is unchanged. If |ρ| ≥ 1 then we have a non-stationary process (more on this in a minute).

We can now impose some new assumptions.
Assumption D3 (xt, εt) is a stationary and ergodic sequence
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Note that even with strict exogeneity OLS may be unbiased but inconsistent if εt is explosive
(non-stationary). Assumptions D1-D3 plus technical conditions can get us consistency,
however, we are interested in relaxing strict exogeneity with:
Assumption D4 (weak exogeneity) E[εt|xt] = 0

This assumption can only be true we have either autocorrelated errors or a lagged value of y,
but not both. To see this consider the following

yt = β′zt + γyt−1 + εt

εt = ρεt−1 + ut,

rearranging we get
yt = β′zt + (β′zt−1 + εt−1)γ + (ρεt−1 + ut).

If ρ = 0 or γ = 0 then weak exogeneity holds. Otherwise, yt−1 is correlated with the joint
error term. Let’s put a pin in this for now and assume that we have D4 with (potentially)
autocorrelated errors.
Assumption D5 Other technical conditions that allow us to apply the ergodic theorem (like
a LLN for dependent data) and a version of CLT for dependent observations

Now we have a result that
Property D2 OLS is consistent if D1, D3-D5 hold.

This means that OLS will be be biased, but consistent if we have weak exogeneity with
stationary and erogodic data (e.g., a lagged dependent variable). We can also get to asymptotic
normality.
Property D3 OLS is asymptotically normal if D1, D3-D5 hold, such that

√
T (β̂ − β) d→ N(0, C−1BC−1).

Here C = E[xtx′t] and B = limT→∞Var(T−1/2∑T
t=1 xtεt). We already know how to estimate

C from our discussion on robust standard errors, but B is a new challenge.
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We can start by working on the variance term

Var(T−1/2
T∑
t=1

xtεt) = 1
T

T∑
t=1

Var(xtεt) + 1
T

∑
t6=s

Cov(xtεt, xsεs)

= T−1
T∑
t=1

E[ε2
txtx

′
t]︸ ︷︷ ︸

variance

+T−1
T−1∑
`=1

T∑
t=`+1

(
E[εtεt−`xtx′t−`] + E[εtεt−`xt−`x′t]

)
︸ ︷︷ ︸

Covariance among observations

The covariance term can be simplified using stationarity of xt and εt let

λ(`) = E[εtεt−`xtx′t−`]

Now because any gaps of the same size have the same covariance, same gap between them:

Var
(
T−1/2

T∑
t=1

xtεt

)
= λ(0) +

T−1∑
`=1

T − `
T

(λ(`) + λ(`)′)

By ergodicity, we know that for some lag L, λ(`) = 0 for all ` > L. So if we know that L we
can estimate B as

B̂ = λ̂(0) +
L∑
`=1

T − L
T

(
λ̂(`) + λ̂(`)′

)
.

However, we never know L in practice. Ideally, we could use L = T − 1, but then we have to
estimate λ(T − 1), which is the covariance between observations T − 1 periods apart. We
would only have two observations to estimate that covariance with. . . not good. Instead we
will pick L in away that L increases with T and we will weight the lags such that we don’t
let large gaps (high variance estimates) have a lot of influence on the process.

B̂ = λ̂(0) +
T−1∑
`=1

w`
(
λ̂(`) + λ̂(`)′

)
.

Of course now we have to pick w` and L, Newey and West suggest w` = 1− `
L+1 for s ≤ L

and 0 otherwise. The general rule-of-thumb has settled on L ≈ T 1/4, but software usually
picks a good one for you.

Newey-West standard errors (sandwich::NeweyWest) account for both heteroskedasticity
and any autocorrelation in εt. OLS is inefficient but consistent (so long as the autocorrelation
is not the result of omitted variables), but these are the equivalent of robust standard errors
for time series data. It is worth noting at this point that OLS is biased and inconsistent with
autocorrelation and lagged variables, so if you are looking at lagged models, you want to get
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the autocorrelation as low as humanly possible before settling on a model.

Note, that the above only works if your data are stationary. There are tests for this and
modeling approaches for non-stationary data. The main test for stationary is the (augmented)
Dickey-Fuller (ADF) test. We can start with

yt = ρyt−1 + εt.

What we want to know if ρ = 1, but if it does we have a problem, so OLS is not a good
choice under the null of non-stationary data. We will subtract yt−1 from both sides to get

∆yt = (ρ− 1)yt−1 + εt.

We can also expand into a much more general null model of interest:

∆yt = β0 + β1t+ β2yt−1 +
p+1∑
`=1

δ`∆yt−` + εt.

1. Most importantly, we need to know if β2 = 0 (unit root). This is a standard statistic

ADF = β̂2

S.E.(β̂2)
,

but with a non-standard distribution. See the example code for more details. We want
to reject the null hypothesis that our variable is non-stationary.

2. β0 = β1 = 0 but β2 6= 0 would tell us that yt a random walk (a type of non-stationary
data)

3. Just β0 = 0 but β1 6= 0 and β2 6= 0 tell us that yt a random walk with drift (also
non-stationary data where the mean is moving with t)

4. Whether we choose to include β0 and β1 is a case-by-case choice. Rule of the thumb is
to plot the series. See what it looks like

set.seed(123)
T <- 1001

y.stationary <-y.randomwalk <- y.rwdrift <- y.rwtrend <- rep(0, T)
for(t in 2:T){

y.stationary[t] <- .7*y.stationary[t-1] + rnorm(1)
y.randomwalk[t] <- y.randomwalk[t-1] + rnorm(1)
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y.rwdrift[t] <- .25 + y.rwdrift[t-1] + rnorm(1)
y.rwtrend[t] <- .25 - .05*t+ y.rwtrend[t-1] + rnorm(1)

}
y.stationary <- y.stationary[501:1001]
y.randomwalk <- y.randomwalk[501:1001]
y.rwdrift <- y.rwdrift[501:1001]
y.rwtrend <- y.rwtrend[501:1001]
par(mfrow=c(2,2))
plot(y.stationary, type="l", main="Stationary (Good!)")
plot(y.randomwalk, type="l", main="Random Walk")
plot(y.rwdrift, type="l", main="Random Walk with Drift")
plot(y.rwtrend, type="l", main="Random Walk with Trend")
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Note, that we should test every variable (y and each non-constant/non-dummy variable in
X) for stationarity. If we fail to reject the null, the first solution is to use the first difference
∆xt = xt − xt−1 in place of that variable (test that for stationarity, too).

Time series work flow:

1. Using your theory, build a model that may or may not include lags of covariates and
the dependent variable
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2. Test each variable for stationary. Difference variables (multiple times if necessary)
until all variables are stationary. The ur.df function in the urca package, is a good
implementation for the ADF.

3. Fit the model using OLS.
4. Test of autocorrelation in the residuals using a Breusch-Godfrey test and visuals like

the autocorrelation function
5. If you detect autocorrelation, think carefully about whether you think more lags of the

variables makes sense. Add in any additional lags (of xt or yt) you think make sense.
• Usually you want to do this in some kind of balanced order. Start with yt−1 then
xt−1 then yt−2 then xt−2 and so on. This is called an autoregressive distributed
lag model, or ARDL(p, q) where p is the number of lags of y and q is the number
of lags in x that you include.

6. Iterate steps 2 and 3 until either you eliminate autocorrelation or think you’ve added
as many variables as makes sense.

7. Use Newey-West standard errors, especially if you have any remaining autocorrelation.
You want autocorrelation as low possible to minimize the risk of bias and inconsistency,
but it is not always possible to completely model away the autocorrelation.

7.1 Application

library(lmtest)
library(sandwich)
library(car)
library(urca) #tests for stationarity
library(dplyr)
rm(list=ls())
load("Rcode/datasets/outbidding.Rdata")

model.naive <- lm(states~Hattacks.count+Fattacks.count+lag.emp,
data=regData)

coeftest(model.naive)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -1.444572 0.416659 -3.4670 0.0006045 ***
## Hattacks.count -0.099619 0.122582 -0.8127 0.4170597
## Fattacks.count -0.184537 0.446252 -0.4135 0.6795216
## lag.emp -1.084718 0.106694 -10.1666 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

acf(model.naive$residuals)
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bgtest(model.naive)

##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: model.naive
## LM test = 295.67, df = 1, p-value < 2.2e-16

regData <- regData %>%
arrange(date) %>%
mutate(lag.states=lag(states))

head(regData[,c("date", "states", "lag.states")])
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## date states lag.states
## 1: Jan 1994 2.893481 NA
## 2: Feb 1994 4.591593 2.893481
## 3: Mar 1994 6.215804 4.591593
## 4: Apr 1994 7.886076 6.215804
## 5: May 1994 9.618549 7.886076
## 6: Jun 1994 9.695237 9.618549

model.lagged <- lm(states~Hattacks.count+Fattacks.count+lag.emp+lag.states,
data=regData)

coeftest(model.lagged)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0013148 0.0264057 0.0498 0.960323
## Hattacks.count -0.0497171 0.0076163 -6.5277 2.923e-10 ***
## Fattacks.count 0.3179509 0.0277787 11.4459 < 2.2e-16 ***
## lag.emp 0.0208208 0.0077439 2.6887 0.007583 **
## lag.states 1.0044683 0.0036396 275.9803 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

acf(model.lagged$residuals)
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#BIG and persistent not good
bgtest(model.lagged)

##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: model.lagged
## LM test = 12.559, df = 1, p-value = 0.0003942

#test for stationarity of y
### NOTE THAT THE t STAT IN THE REGRESSION
### IS THE ADF STAT; BUT THE p VALUE IS
### WRONG. USE THE CRITICAL VALUES AT THE BOTTOM
### WE WANT TO REJECT

par(mfrow=c(2,2))
plot(states~Date, data=regData, type="l")
plot(Hattacks.count~Date, data=regData,type="l")
plot(Fattacks.count~Date, data=regData, type="l")
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plot(lag.emp~Date, data=regData,type="l")
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summary(ur.df(na.omit(regData$states),
type="none", selectlags = "AIC")) #uh oh

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.00329 -0.28790 -0.07590 0.07601 1.95070
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.0006652 0.0035147 -0.189 0.85
## z.diff.lag 0.2277860 0.0555417 4.101 5.32e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4588 on 296 degrees of freedom
## Multiple R-squared: 0.0538, Adjusted R-squared: 0.0474
## F-statistic: 8.414 on 2 and 296 DF, p-value: 0.0002791
##
##
## Value of test-statistic is: -0.1893
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62

regData <- regData %>%
mutate(diff.states=states-lag.states)

summary(ur.df(na.omit(regData$diff.states),
type="none", selectlags = "AIC")) #good

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.91095 -0.27117 -0.07073 0.06551 1.84500
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.61009 0.06819 -8.947 < 2e-16 ***
## z.diff.lag -0.25458 0.05438 -4.682 4.34e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4376 on 295 degrees of freedom
## Multiple R-squared: 0.4528, Adjusted R-squared: 0.4491
## F-statistic: 122 on 2 and 295 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -8.9474
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62

#Always good to check x too
summary(ur.df(na.omit(regData$Hattacks.count),

type="trend", selectlags = "AIC")) #good

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.401 -1.254 -0.939 0.093 34.426
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.794512 0.407282 1.951 0.052 .
## z.lag.1 -0.764468 0.071594 -10.678 <2e-16 ***
## tt 0.002176 0.002301 0.946 0.345
## z.diff.lag 0.006405 0.058061 0.110 0.912
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.411 on 294 degrees of freedom
## Multiple R-squared: 0.382, Adjusted R-squared: 0.3757
## F-statistic: 60.57 on 3 and 294 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -10.6779 38.0412 57.0614
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.98 -3.42 -3.13
## phi2 6.15 4.71 4.05
## phi3 8.34 6.30 5.36

summary(ur.df(na.omit(regData$Fattacks.count),
type="trend", selectlags = "AIC")) #good

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -1.4070 -0.1633 -0.1271 -0.0840 14.7942
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1896422 0.1114236 1.702 0.0898 .
## z.lag.1 -0.8934342 0.0804906 -11.100 <2e-16 ***
## tt -0.0004301 0.0006347 -0.678 0.4985
## z.diff.lag -0.0858593 0.0577027 -1.488 0.1378
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9394 on 294 degrees of freedom
## Multiple R-squared: 0.4953, Adjusted R-squared: 0.4901
## F-statistic: 96.16 on 3 and 294 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.0999 41.0936 61.6282
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.98 -3.42 -3.13
## phi2 6.15 4.71 4.05
## phi3 8.34 6.30 5.36

summary(ur.df(na.omit(regData$lag.emp),
type="none", selectlags = "AIC")) #good

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
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## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.28774 -0.03004 -0.00272 0.02524 0.51413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.004421 0.001278 -3.46 0.000619 ***
## z.diff.lag 0.951303 0.019000 50.07 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07953 on 295 degrees of freedom
## Multiple R-squared: 0.8949, Adjusted R-squared: 0.8941
## F-statistic: 1255 on 2 and 295 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -3.4602
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62

summary(ur.df(na.omit(regData$lag.emp),
type="drift", selectlags = "AIC")) #good

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression drift
##
##
## Call:
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## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.28469 -0.02795 -0.00023 0.02884 0.51555
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002644 0.004721 -0.56 0.575892
## z.lag.1 -0.004556 0.001302 -3.50 0.000537 ***
## z.diff.lag 0.952471 0.019136 49.77 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07962 on 294 degrees of freedom
## Multiple R-squared: 0.8942, Adjusted R-squared: 0.8935
## F-statistic: 1242 on 2 and 294 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -3.5 6.1294
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau2 -3.44 -2.87 -2.57
## phi1 6.47 4.61 3.79

#with differences
par(mfrow=c(1,1))

# no lags
model.diff <- lm(diff.states~Hattacks.count+Fattacks.count+lag.emp,

data=regData)
coeftest(model.diff, vcov=NeweyWest)

##
## t test of coefficients:
##
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0051171 0.0375650 -0.1362 0.891739
## Hattacks.count -0.0499390 0.0167495 -2.9815 0.003107 **
## Fattacks.count 0.3157157 0.1048534 3.0110 0.002829 **
## lag.emp 0.0159029 0.0069924 2.2743 0.023666 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

acf(model.diff$residuals) #fairly small
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##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: model.diff
## LM test = 13.462, df = 1, p-value = 0.0002434

# Lag y ARDL(1,0)
regData <- regData %>%

mutate(L.diff.states=lag(diff.states))
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model.diff10 <- lm(diff.states~Hattacks.count+Fattacks.count+lag.emp+L.diff.states,
data=regData)

coeftest(model.diff10, vcov=NeweyWest)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0049230 0.0308458 -0.1596 0.873307
## Hattacks.count -0.0479644 0.0179848 -2.6669 0.008080 **
## Fattacks.count 0.2995364 0.0935361 3.2024 0.001513 **
## lag.emp 0.0144000 0.0055456 2.5967 0.009888 **
## L.diff.states 0.1604718 0.0907968 1.7674 0.078207 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

acf(model.diff10$residuals)
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##
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## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: model.diff10
## LM test = 0.00020079, df = 1, p-value = 0.9887

# Autocorrelation is mostly gone.
# Do we have empirical or theoretical reason to add
# any additional lags? Not really.
# Let Newey-West errors take it from here
# We could also use model.diff with
# Newey-West and save an observation
# (no real differences in estimates, but good to know)

linearHypothesis(model.diff10,
c("Hattacks.count+Fattacks.count=0"),
vcov=NeweyWest)

## Linear hypothesis test
##
## Hypothesis:
## Hattacks.count + Fattacks.count = 0
##
## Model 1: restricted model
## Model 2: diff.states ~ Hattacks.count + Fattacks.count + lag.emp + L.diff.states
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 294
## 2 293 1 7.6843 0.005927 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(model.diff,
c("Hattacks.count+Fattacks.count=0"),
vcov=NeweyWest)

## Linear hypothesis test
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##
## Hypothesis:
## Hattacks.count + Fattacks.count = 0
##
## Model 1: restricted model
## Model 2: diff.states ~ Hattacks.count + Fattacks.count + lag.emp
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 296
## 2 295 1 6.6376 0.01047 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

### NOTE: If you wanted to keep going the next step would be lags of x ARDL(1,1)

regData <- regData %>%
mutate(L.Hattacks.count=lag(Hattacks.count),

L.Fattacks.count=lag(Fattacks.count),
L.lag.emp=lag(lag.emp))

model.diff11 <- lm(diff.states~Hattacks.count+Fattacks.count+lag.emp
+L.Hattacks.count+L.Fattacks.count+L.lag.emp
+L.diff.states,
data=regData)

coeftest(model.diff11, vcov=NeweyWest)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0125460 0.0313382 -0.4003 0.6891991
## Hattacks.count -0.0520474 0.0195343 -2.6644 0.0081442 **
## Fattacks.count 0.3099712 0.0917913 3.3769 0.0008332 ***
## lag.emp -0.2513412 0.0961282 -2.6146 0.0093988 **
## L.Hattacks.count 0.0163770 0.0082324 1.9893 0.0476028 *
## L.Fattacks.count -0.0383971 0.0203329 -1.8884 0.0599671 .
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## L.lag.emp 0.2653627 0.0978218 2.7127 0.0070723 **
## L.diff.states 0.1856970 0.0843759 2.2008 0.0285361 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

acf(model.diff11$residuals)
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bgtest(model.diff11) #This is a weird result and a reminder that checking the

##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: model.diff11
## LM test = 10.982, df = 1, p-value = 0.0009199

# ACF is very much a good idea. The first order autocorrelation is very small
# and not worth worrying about
linearHypothesis(model.diff11,

c("Hattacks.count+Fattacks.count=0"),
vcov=NeweyWest)

## Linear hypothesis test
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##
## Hypothesis:
## Hattacks.count + Fattacks.count = 0
##
## Model 1: restricted model
## Model 2: diff.states ~ Hattacks.count + Fattacks.count + lag.emp + L.Hattacks.count +
## L.Fattacks.count + L.lag.emp + L.diff.states
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 291
## 2 290 1 8.5269 0.003774 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7.2 Bonus topic: FGLS for AR(1) errors

Suppose we have Assumptions D1-D2, then OLS is unbiased but inefficient. As always we
can claw back some efficiency with an FGLS procedure. The model of interest is

yt = β′xt + εt

εt = ρεt−1 + ut

Var(ut|X) = σ2
u

E[ut|X] = 0

Cov(ut, ut′ |X) = 0 ∀t 6= t′.

We can now verify that E[εt|X] = 0 in this context as

E[εt|X] = E[ρεt−1+ut|X] = E[ρ(ρεt−2+ut−1)+ut|X] = E[ut|X]+ρE[ut−1|X]+ρ2 E[ut−2|X] . . . = 0.

Let’s introduce D3 to get |ρ| < 1.

E[ε2
t |X] = σ2

u + ρ2σ2
u + ρ4σ2

u + . . .
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Without stationarity, this sum explodes, but with stationarity we get a geometric sum

E[ε2
t |X] = σ2

u

1− ρ

and covariance

E[εtεt−1|X] = E[ρε2
t−1 + utεt−1|X] = ρE[ε2

t−1] = ρσ2
u

1− ρ.

We can now specify the full covariance matrix of ε

sΩ = σ2
u

1− ρ



1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . . . ρT−3

... ... ... . . . ...
ρT−1 ρT−2 ρT−3 . . . 1


where s = σ2

u/(1 − ρ) The FGLS approach (as always) is based on modeling this matrix
(estimating ρ) then weighting the data to get back to “spherical” errors homoskedasticity
and no serial correlation.

1. OLS Step OLS is unbiased and consistent, so regress yt on xt and estimate ρ̂ using the
residuals. (sample correlation between εt and εt−1)

2. Transformation Transform the data

ỹ =



√
1− ρ̂2y1

y2 − ρ̂y1

y3 − ρ̂y2
...

yT − ρ̂yT−1


, X̃ =



√
1− ρ̂2x′1

x′2 − ρ̂x′1
x′3 − ρ̂x′2

...
x′T − ρ̂x′T−1


3. FGLS step Fit the model using OLS on the transformed data. The errors in this model

are now
εt − ρεt−1 = ut.

As such, you can estimate σ2
u using the residual variance from the FGLS step. There is

an R package prais to do these for you.

If ut ∼ N(0, σ2
u) then this model can be estimated in a single step using maximum likelihood
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with log-likelihood

L(β, σ2
u, ρ|y,X) = −T2 log(2π)− T

2 log(σ2
u) + 1

2 log(1− ρ2)

− 1
σ2
u

(
(1− ρ2)(y1 − β′xt)2 +

T∑
t=2

(yt − β′xt + ρ(yt−1 − β′xt−1))2
)

7.3 Bonus topic: Consistent and efficient estimation with lagged
variables

Note that there is a combined FGLS and IV approach to working around the problem of
inconsistency with lagged variables and autocorrelation. Let’s return to the model

yt = β′xt + γyt−1 + εt

εt = ρεt−1 + ut

where ut is white noise (stationary and non-autocorrelated). As we know, this will be
inconsistent if we just fit this model naively with OLS, because

T∑
t=1

[xt yt−1]εt
p→ E [[xt yt−1]εt] 6= 0,

due to omitted variables hiding in εt (i.e., even weak exogneity is violated). We could follow
the ARDL steps to remove the autocorrelation to obtain consistent estimates, but we can
gain some efficiency by using the following FGLS:

1. Regress yt using the residuals of a regression of yt on xt and xt−1. Save the residuals.
By construction these true errors from this regression contain yt−1 and xt−1, but we
remove any correlation with the residuals and xt−1. As such these will be related to
yt−1 (relevant), and they will only related to yt through this relationship (valid).

2. Estimate β̂ and γ̂ using 2SLS with the residuals from 1 as an instrument for yt−1.
3. Use the 2SLS residuals to form an estimate of ρ.

ρ̂ =
∑T
t=3 ε̂t,2slsε̂t−1,2sls∑T

t=3 ε̂
2
t,2sls

.
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4. Generate data
y∗t = yt − ρ̂yt−1

x∗t = xt − ρ̂xt−1

y∗t−1 = yt−1 − ρ̂yt−2

ε̂t−1 = yt−1 − β̂′2slsxt−1 − γ̂2slsyt−2,

and regress y∗t on x∗t , y∗t−1 and ε̂t. Let δ̂ be the estimated coefficient on ε̂t in this
regression than the FGLS estimate of ρ is

ρ̃ = ρ̂+ δ̂.

The other estimates can be used straight from the regression with either classic or
Newey-West standard errors.

7.4 Bonus topic : Effects on current and future values of y

Consider the ARDL(p, q) model:

yt = α0 +
p∑
s=1

yt−sρs +
q∑
`=0

(
xt−`β1+` + γ′1+`zt−`

)
+ εt,

where xt is the variable of interest and zt are additional controls. When there is a change
in xt, there is both a contemporaneous effect on yt, but also a future effect on yt+1, yt+2, . . ..
We can identify all of these:

∂yt
∂xt

= β1

∂yt+1

∂xt
= β2 + ρ1

(
∂yt
∂xt

)
= ρ1β1 + β2

∂yt+2

∂xt
= β3 + ρ1

(
∂yt+1

∂xt

)
+ ρ2

(
∂yt
∂xt

)
= ρ2

1β1 + ρ1β2 + ρ2β1 + β3

...
∂yt+s
∂xt

= βs+1 +
s∑
`=1

ρ`

(
∂yt+s−`
∂xt

)

By stationarity the limit of this will be 0 as s→∞.

You can also consider the total effect of a “permanent” change in xt rather than just a one-off.
In this case we would just sum these effects and using the properties of infinite geometric
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sums we get:
∞∑
s=0

∂yt+s
∂xt

=
∑q
`=1 β`

1−∑p
s=1 ρs

.

For any of these effects, the delta method will provide standard errors.
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8 Panel data crash course

With panel data we will start with a new set up assumptions. First, as usual, we will start
with the DGP.
Assumption E1 The data generating process is linear-in-the-parameters, such that

yit = αi + β′xit + γ′zi + εit.

Usually we think of i as “units” (individuals, states, countries, dyads, etc) and t as “within-
unit” observations (typically time, but could be multiple individuals within a unit, etc). We
will let i = 1, . . . , N , t = 1, . . . , T and NT be the total number of observations. To make
exposition easier, we will assume a “balanced” panel where T is the same for each i, but
nothing we do will depend on that. Note that neither xit nor zi contain a constant term right
now, instead αi reflects the constant(s). More on this to come. Additionally, xit is a variable
that changes both across and within units, while zi just changes within units. Until further
notice assume that αi = α for all i (Assumption E1.A)

Given this setup, we are unlikely to get something like Assumption B2 (independent observa-
tions) back. Afterall, if our panel is a collection of N separate time series, then iid is pretty
much gone from the start, but we will impose a similar assumption
Assumption E2 Each unit (xi, zi, εi) is drawn iid.

Here we are making the assumption that each block of observations is independent of the
rest and drawn from some population process. We are not currently making any assumptions
about the within-unit data. We will use the notation xi = (xi1, . . . , xiT ) to refer to all
observations of xit within unit i.

As always, We will need to make some kind of exogeneity assumption
Assumption E3 There is strict exogeneity within units, E[εit|xi, zi] = 0.

Let X = [1 X Z] and let θ = (α, β, γ)′, then the pooled OLS estimator for the panel model is

θ̂pooled =
(

1
NT

N∑
i=1

T∑
t=1

xitx′it

)−1 1
NT

N∑
i=1

T∑
t=1

xityit

= (X′X)−1X′y,
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or (by E1.A)

θ̂pooled = θ +
(

1
NT

N∑
i=1

T∑
t=1

xitx′it

)−1 1
NT

N∑
i=1

T∑
t=1

xitεit.

By strict exogeneity within unit and independence across units we have E[εit|X] = 0 and
thus we can apply iterated expectations to get
Property E1 Under E1.A-E3 the pooled estimator θ̂pooled is unbiased

Like with time series models, we may find ourselves in a world where strict exogeneity doesn’t
make sense. Note that as with time series data, moving away from strict exogeneity will limit
us to mostly asymptotic results, unless we want to make a within-unit iid assumption (which
we probably don’t).
Assumption E4 The data are weakly exogeneous, E[εit|xit] = 0

Further, we will impose a rank condition
Assumption E5 The matrix E

[
1
T

∑T
t=1 xitx′it

]
has full rank.

In this assumption we are assert that the DGP for the T observations we observe within each
unit is well behaved and of full rank. Most of the panel data results we consider will be with
respect to a fixed T .
Assumption E6 Technical and moment assumptions that allow us to apply a type of LLN
and a type of CLT

Using our usual LLN-type arguments we can verify the consistency of the pooled estimator.

θ̂pooled = θ +
(

1
NT

N∑
i=1

T∑
t=1

xitx′it

)−1 1
NT

N∑
i=1

T∑
t=1

xitεit

1
N

N∑
i=1

(
1
T

T∑
t=1

xitx′it

)
p→ E

[
1
T

T∑
t=1

xitx′it

]
= Q

1
N

N∑
i=1

(
1
T

T∑
t=1

xitεit
)

p→ E
[

1
T

T∑
t=1

xitεit
]

= 0

θ̂pooled
p→ θ

Property E2 Under E1.A, E2, and E4-E6 the pooled estimator θ̂pooled likely exists for large
enough N and the estimator is consistent for θ.

336



The asymptotic normality follows in the usual way with

√
N(θ̂pooled − θ) =

(
1
NT

N∑
i=1

T∑
t=1

xitx′it

)−1 √
N

NT

N∑
i=1

T∑
t=1

xitεit

1
T

T∑
t=1

xitx′it
p→ E

[
1
T

T∑
t=1

xitx′it

]
= Q

1
T

T∑
t=1

xitεit
d→ N(0,ΣN)

√
N(θ̂pooled − θ) d→ N(0,Q−1ΣNQ−1)

Σ = Var
(

1
T

T∑
t=1

xitεit
)

Property E3 Under E1.A, E2, and E4-E6 the pooled estimator θ̂pooled is asymptotically
normal such that √

N(θ̂pooled − θ) d→ N(0,Q−1ΣNQ−1)

This is a format we should be used to seeing by now, but notice that we don’t have within-
independence and Σ is not diagonal. We can estimate this full variance of θ as

avar
(
θ̂pooled

)
= 1
N

Q−1ΣNQ−1

âvar
(
θ̂pooled

)
= 1
N

Q̂−1Σ̂NQ̂−1

Q̂ = 1
NT

N∑
i=1

T∑
t=1

xitx′it

Σ̂N = 1
N

N∑
i=1

[
1
T

T∑
t=1

xitε̂it
] [

1
T

T∑
t=1

xitε̂it
]′
.

This variance matrix is called the cluster-robust or clustered variance matrix. The square
root of the diagonal provides clustered standard errors. Note that the clustered variance
matrix allows for arbitrary correlation among the errors (we haven’t imposed any structure
on them, not even stationarity). This is a powerful result that makes the clustered matrix
very popular. Furthermore, the meat of this sandwich is an average over units. As such, this
estimator is only asymptotically valid in N . If you have less than 50 units, the clustered
matrix is probably not reliable and you may be better off with basic robust standard errors
(if NT is large enough), or another alternative. To see one such alternative, consider a fixed
N and let’s allow T to increase.

With large N and small T we treated each unit as it’s own independent observation. With
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large T and small N , we can imagine that we have a small number of long time series we
want to analyze.
Assumption E7 Within unit (xt, εt) are stationary and ergodic

Assumption E8 The matrix E
[

1
N

∑N
i=1 xitx′it

]
has full rank.

These new assumptions give us the same basic results we would expect
Property E4 Under E1.A, E4, E6, E7-E8 the pooled estimator θ̂pooled likely exists for large
enough T and the estimator is consistent in T .

Property E5 Under Assumptions E1.A, E4, E6, E7-E8 the pooled estimator θ̂pooled is
asymptotically normal such that

√
T (θ̂pooled − θ) d→ N(0,Q−1ΣTQ−1)

Where the main difference is that ΣT 6= ΣN under these new assumptions. Instead, it follow
from the Newey-West results we saw above. We won’t get into that, because it’s not often
done in most panel work. If you have enough N to use clustered standard errors instead,
you’re probably better off there even if T is also big. Additional alternatives exist, but we’ll
set those aside for now. If you have homoskedasticity and no autocorrelation, than the
ordinary standard errors are still correct (but how likely is that)?

However, what about situations where we have heterogeneity across units in our model? We
will consider this in two parts

8.1 Random effects

The random effects model starts with Assumption E1, but we will make some adjustments.
Let’s consider another adjustment (Assumption E1.R)

yit = αi + α + β′xit + γ′zi + uit

αi
iid∼ f(α)

E[αi] = 0

Cov(αi,xi) = Cov(αi, ui) = 0

Var(αi) = σ2
α

Var(uit|xit) = σ2
u
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We will also go back to an iid world (Assumption E2.R more restrictive than Assumption
E2) by letting (xit, εit) be iid. Finally, we will adjust the weak exogeneity assumption
(Assumption E4.R)

E[uit|xit, αi] = 0.

Notice that we’ve built some homoskedasticity into Assumption E1.R as well. To see the
restrictiveness of this model over the basic model, consider that all the within-unit correlation
here comes from the presence of αi. In contrast, the basic model allowed for arbitrary
within-unit correlation.

Because these are more restrictive assumptions that E2 and E4 all of the above results still
apply. The pooled estimator θ̂pooled is unbiased, consistent, and asymptotically normal for
the the random effects model. However, pooled OLS will be inefficient for this model. As
such, we can consider an FGLS solution (sometimes called the random effects estimator).

Steps:

1. Fit the model using pooled OLS (consistent), save the residuals (ε̂it = yit− θ̂′xit). Note
that in the pooled residuals are estimates of ε̂it = α̂i + uit. This relationship implies
that

Var(εit) = Var(αi) + Var(uit) = σ2
α + σ2

u,

while we also know that

Cov(εit, εit′) = Cov(αi + uit, αi + uit′) = σ2
α

2. EITHER:

• Fit the model using the within estimator (detailed below), save the residuals ûit
and estimate

σ̂2
u = û′itûit

N(T − 1)−K .

• Use the pooled residuals to estimate

σ̂2
α = 1

N(T − 1)(T/2)

N∑
i=1

T∑
t=2

t−1∑
t′=1

ε̂itε̂it′ ,

3. Use the relationship
σ2
ε = σ2

α + σ2
u

to back out the remaining quantity of interest.
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4. Build a big NT ×NT block diagonal matrix Ω̂

Ω̂ =


Ω̂1 0 . . . 0
0 Ω̂2 . . . 0
... ... . . . ...
0 0 . . . Ω̂N



Ω̂i =


σ̂2
α + σ̂2

u σ̂2
α . . . σ̂2

α

σ̂2
α σ̂2

α + σ̂2
u . . . σ̂2

α
... ... . . . ...
σ̂2
α . . . σ̂2

α σ̂2
α + σ̂2

u



More conveniently, we can build

λ = 1−

√√√√ σ̂2
u

σ̂2
u + T σ̂2

α

x̃it = xit − λx̄i
ỹit = yit − λȳi

θ̂RE-FGLS =
(
X̃′X̃

)−1
X̃′ỹ

Property E6 Under Assumptions E1.R, E2.R, E4.R, and E5-E6, the random effects esti-
mator will exist, be consistent for θ in N , be asymptotically normal, and be more efficient
than pooled OLS.

A lot of people in political science really like the random effects model and really want to lean
on that efficiency gain. When αi ∼ N(α, σ2

α) you can get asymptotic efficiency, but again at
what cost? I don’t get it. You can use the clustered variance matrix with random effects if
you want to be a little more conservative, but if you do then you’re also admitting that you
got Ω wrong, so what was it all for?

Additional notes:

1. The random effects estimator is consistent in T , but it will not be efficient because you
need large N to get a good estimate of σ2

α.
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8.2 The fixed effects model

We will now consider a more general model and then talk about how it relates to the RE
model. The FE model starts with Assumption E1 with no tweaks, our DGP is

yit = αi + β′xit + γ′zi + uit.

Unlike with the RE model, here αi are fixed parameters not a random variable (thus the
names). We will also return to iid units (not observations) so E2 is fully back.

For the moment let’s return to E3 and allow for strict exogeneity within units. Note that
we have a very similar setup to the pooled model. The one tweak is that we have not said
anything about the correlation between αi and xit. In the pooled model we assumed that
any deviations from α could be safely let in ε, but that’s no longer true. This suggests that
the pooled model may be trouble. Let’s break αi into two parts αi = α + δi so we can see
what happens if we fit the fixed effects model using pooled OLS. Note that εit = uit + δi We
now find that

E[θ̂pooled|xit] = θ +
(

1
NT

N∑
i=1

T∑
t=1

xitx′it

)−1 1
NT

N∑
i=1

T∑
t=1

xitδi,

which is our familiar omitted variable bias result. If there is any correlation between the
variables in xit and the unit-specific heterogeneity δi, then the pooled estimator (and by
extension the random effects estimator) are biased and inconsistent.

We will now consider three methods for removing/accomidating this heterogeneity:

8.2.1 First differences (skip if we’re short on time)

One thing we can do is take the regression in differences by subtracting yt−1 from both sides.

yit − yt−1 = (αi − αi) + β′(xit − xit−1) + γ′(zi − zi) + uit − uit−1

∆yit = β′∆xit + ∆uit.

All the time-invariant variables/heterogeneity are removed and OLS becomes a good estimator
for β.
Property E7 Under Assumptions E1-E3 the first differences estimator β̂FD is unbiased for
β.
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With appropriate rank and moment assumptions, we can also obtain
Property E8 Under Assumptions E1, E2, E4, and some technical assumptions, β̂FD is
consistent in N and asymptotically normal with the clustered variance matrix

The FD estimator is also consistent in T (with Assumptions E7-E8, but also E3) with the
Newey-West style variance matrix. First differences are great and there are lots of reasons to
like them, but a more common solution is. . .

8.2.2 Least squares dummy variable estimator OR within estimator

Another intuitive way to fit the fixed effects model is estimate the time invariant parameters
directly for each unit. Let

δi = αi + γ′zi,

then the model becomes
yit = β′xit + δ′dit + uit,

which can be fit using OLS. Let θLSDV = (β, δ) and redefine X = [X D] where D is a NT ×N
matrix of dummy variables where each column denotes if the observation is associated with
unit i. Notice that we no longer have an overall constant, instead we have a constant for each
unit δi. Also note that this constant controls for all time-invariant heterogeneity, even things
we didn’t think of or can’t measure. In this way, the fixed effects model is a very important
tool for fighting endogeneity as it eliminates any concerns about omitted variable bias from
time-invariant sources.

Using the LSDV estimator to fit the fixed effects model is algebraically equivilent to fitting
the following model using OLS

yit − ȳi = β′(xit − x̄i) + (uit − ūi),

this approach is called the within estimator. Note that β̂within will always equal β̂LSDV ,
but it saves us from estimating the N δ parameters.
Property E9 Under Assumptions E1-E3 the LSDV/within estimators for β and δ are
unbiased

With appropriate rank and moment assumptions, we can also obtain
Property E10 Under Assumptions E1, E2, E4 and extra technical assumptions, the LSD-
V/within estimators for β are consistent in N and asymptotically normal with the clustered
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variance matrix

Likewise, we can take asymptotic wrt to T (adding Assumptions E7-E8) and get consistency
and asymptotic normality as T →∞ with panel Newey-West variance asymptotically.

While the LSDV and within estimators always produce the exact same estimates for β, they
will only be identical to the FD estimates when T = 2. The main advantage of LSDV/within
over the FD estimator is when we have large T and want to include lagged variables. Both FD
and LSDV are biased in this case, but the LSDV is consistent in T with a lagged dependent
variable (byvirtue of weak exogeneity). The FD estimator is inconsistent as it requires strict
exogeneity. Likewise, with the within/LSDV you can get estimates of δ that are consistent
in T , which you can’t do with FD. There are other differences regarding when one is more
efficient than the other, but that’s not the best use of our time. For the most part, the
LSDV/within approach is probably going to be your better go to. If we have time, we can
talk about dynamic panel models, but I’m not optimistic; the thing to remember is that if
you want a lagged DV in your fixed effects model, you need a big T .

8.3 Correlated random effects (CRE) and model testing

The next thing you should want to know is when do you want to use the pooled, or random
effects FGLS, or the LSDV/within. Here is a handy chart to help with the conditions and
then we’ll discuss tests
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Model Pooled RE-FGLS FD LSDV/within

Basic model:
yit = α +
β′xit + γ′zi + εit

(xi, εi) iid

Unbiased and
consistent for θ if
E[εit|xi] = 0.
Biased, but
consistent for θ if
only E[εit|xit] = 0.
Most efficient if εit
are homoskedastic,
otherwise
cluster/Newey-
West
depending.

Unbiased and
consistent for θ
if E[εit|xi] = 0.
Biased, but
consistent for θ
if only
E[εit|xit] = 0.
no efficiency
gains over
pooled model.
Covariance
matrix is
incorrect b/c of
iid assumptions
(clustering may
help)

Unbiased for β
if E[εit|xi] = 0.
Consistent in
N for β if
E[εit|xit] = 0.
Consistent in
T for β if
E[εit|xi] = 0
and (xit, εit)
are stationary
and ergodic

Unbiased for β
and δi if
E[εit|xi] = 0.
Consistent in
N for β if
E[εit|xit] = 0.
Consistent in
T for β and δi
if E[εit|xit] = 0
and (xit, εit)
are stationary
and ergodic

RE model:
yit = αi + α +
β′xit +γ′zi +uit

E[αi] =
Cov(xit, αi) =
Cov(uit, αi) =
0. (xit, εit) iid

see above Unbiased and
consistent for θ
if E[εit|xi] = 0.
Biased, but
consistent for θ
if only
E[εit|xit] = 0
May be more
efficient than
pooled OLS as
N increases

see above see above

FE model:
yit =
β′xit + δi + uit

(xi, εi) iid

Biased and
inconsistent

Biased and
inconsistent

see above see above

Okay, so now you’re thinking I don’t want inconsistent estimates, but efficiency is nice. How
do I choose among these estimator?
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Interesting fact about FGLS-RE and the within/LSDV estimators. Even if the random effects
assumptions are good, the RE-FGLS estimator converges to the within-estimator (below)
as T increases. So the efficiency gains are fleeting as T increases while the risk of bias and
inconsistency remain. One measure of how close the two estimators are is

λ = 1− σu√
σ2
u + Tσ2

α

.

The closer λ is to 1 the more similar the estimates. If the random effects assumptions are not
satisfied the estimator is inconsistent. This has led to the within-estimator being considered
“mostly harmless.”

However, there are also tests for choosing among the approaches. The traditional method is
called a Hausman test, but it’s been subject to a lot of scrutiny lately for being too reject
happy. Instead we’ll focus on a robust form of this test based on nested models.

It turns out that there is another estimator for the fixed effects model that is also equivalent
to the LSDV/within. This is called the correlated random effects estimator. The model
is given by

yit = αi + α + β′xit + β̃′x̄i + uit

E[αi] = 0

αi
iid∼ f

xit =
[
1 xit x̄i

]
Cov(xit, αi) = Cov(uit, αi) = 0

What’s happening here? Well we’re blending the RE and FE models a bit. Or you can blend
the pooled and the FE model by not including αi, which may or may not be better. We
are directly controlling for deviations from the within means (blending the within model),
while deviations of yit from ȳi and uit from ui are captured in αi and α. The estimates β̂CRE
will match those from the LSDV/within exactly. We can use this to test the hypothesis that
β̃ = 0. If we reject the null, then the fixed effects model is more appropriate than either
the pooled or random effects model. If we fail to reject the null, then we can use either the
random effects or pooled estimators.

Panel data definitions and work flow:

1. Determine N and T (or the average T if unbalanced)
2. Fit a pooled/RE and CRE models and conduct a nested model test (with clustered or

Newey-West standard errors)
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3. If the nested test rejects the null, then use the CRE or LSDV/within or FD estimator
(decision shouldn’t really matter much here). LSDV/within is a good default here.

4. If the nested test fails to the reject the null. Use the pooled estimator or the RE-FGLS
estimator with appropriate standard errors.

Recap: the type of exogeneity assumptions matter here just like time series,

• If strict within-unit exogenity holds E[εit|xi] = 0, then all are unbiased
• If strict within-unit exogeneity fails, but weak exogeneity holds E[εit|xit] = 0, then all

are consistent estimators of β in N or T
• If exogeneity fails because of time-invariant omitted variables than the FD and LS-

DV/within estimators are unbiased for β, δi, if strict exogneity otherwise holds, and
consistent in N (for β) or T (for β or δi), if weak exogneity otherwise holds.

As always, any exogeneity assumption you make will be violated under omitted variables. If
the omitted variables are time invariant, then only FE estimators are unbiased (under strict
exogeneity) and consistent (under weak or strict exogeneity). This is the main reason to use
a fixed effects estimator. Also, strict exogeneity will never hold if there is a lagged dependent
variable, but LSDV/within estimators are still consistent in T .

8.4 Applications

library(readstata13)
library(lmtest)
library(sandwich)
library(car)
library(margins)
library(stargazer)
library(dplyr) #data manipulation
library(plm) #panel models

cw.data <- read.dta13("Rcode/datasets/civwar.dta",
nonint.factors = TRUE)

# create a panel data object for when we move to RE/FE
cw.panel <- pdata.frame(cw.data, index=c("ccode", "year"))
within.var <- function(mod, data, idx.N, idx.T){

invariant <- mod$model %>%
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cbind.data.frame(data[row.names(mod$model),c(idx.N, idx.T)],.) %>%
select(!contains(idx.T)) %>%
group_by(get(idx.N)) %>%
summarize(across(.fns=~all(duplicated(.)[-1]))) %>%
summarize(across(.cols=!1:3,.fns=all))

return(colnames(invariant)[invariant[1,]==TRUE])
}

pdim(cw.panel) #large N and large T, we'll do clustered errors not Newey-West

## Unbalanced Panel: n = 161, T = 7-55, N = 6610

## let's start basic (pooled)
model1 <- lm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate

+ncontig+oil
+ethfrac+relfrac
+colbrit+colfra+lmtnest+

+ factor(region) ,
data=cw.data)

signif(coeftest(model1, vcov=vcovHC)[1:12,],2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08800 0.06000 -1.50 1.5e-01
## lpopl1 0.05100 0.00330 16.00 5.0e-54
## polity2l 0.00620 0.00066 9.40 8.9e-21
## I(polity2l^2) -0.00083 0.00016 -5.10 4.5e-07
## lgdpenl1 -0.05100 0.00570 -8.90 6.5e-19
## nwstate -0.02400 0.02500 -0.94 3.5e-01
## ncontig 0.13000 0.01500 8.30 1.7e-16
## oil 0.02800 0.01400 2.00 4.5e-02
## ethfrac 0.08200 0.02000 4.10 4.8e-05
## relfrac 0.00950 0.02200 0.43 6.7e-01
## colbrit -0.02100 0.01300 -1.60 1.2e-01
## colfra -0.02600 0.01500 -1.70 8.2e-02

# We'll make a special function for clustering
# so we don't have to keep specifying the cluster
# variable
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cluster.civilwar <- function(mod){
return(vcovCL(mod,cluster=cw.data$ccode))

}

signif(coeftest(model1, vcov=cluster.civilwar)[1:13,],2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08800 0.20000 -0.44 6.6e-01
## lpopl1 0.05100 0.01300 4.10 4.9e-05
## polity2l 0.00620 0.00170 3.60 2.7e-04
## I(polity2l^2) -0.00083 0.00049 -1.70 8.9e-02
## lgdpenl1 -0.05100 0.01900 -2.60 8.5e-03
## nwstate -0.02400 0.03200 -0.74 4.6e-01
## ncontig 0.13000 0.07800 1.60 1.1e-01
## oil 0.02800 0.04200 0.67 5.0e-01
## ethfrac 0.08200 0.07500 1.10 2.7e-01
## relfrac 0.00950 0.08300 0.11 9.1e-01
## colbrit -0.02100 0.05600 -0.37 7.1e-01
## colfra -0.02600 0.04900 -0.52 6.0e-01
## lmtnest 0.01000 0.01200 0.89 3.7e-01

## add in year dummies
model1.years <- lm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate

+ncontig+oil
+ethfrac+relfrac
+colbrit+colfra+lmtnest+

+ factor(region)
+factor(year),
data=cw.data)

round(coeftest(model1.years,
vcov=cluster.civilwar)[1:13,],4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3307 0.2214 1.4936 0.1353
## lpopl1 0.0436 0.0123 3.5334 0.0004
## polity2l 0.0057 0.0019 3.0771 0.0021
## I(polity2l^2) -0.0009 0.0005 -1.8789 0.0603
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## lgdpenl1 -0.1029 0.0238 -4.3173 0.0000
## nwstate 0.0207 0.0326 0.6354 0.5252
## ncontig 0.1336 0.0773 1.7289 0.0839
## oil 0.0315 0.0402 0.7832 0.4335
## ethfrac 0.0876 0.0742 1.1795 0.2382
## relfrac 0.0309 0.0854 0.3622 0.7172
## colbrit -0.0369 0.0550 -0.6705 0.5026
## colfra -0.0492 0.0484 -1.0149 0.3102
## lmtnest 0.0055 0.0116 0.4715 0.6373

model.re <- plm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate
+ncontig+oil
+ethfrac+relfrac
+colbrit+colfra+lmtnest
+factor(region)
+factor(year),
data=cw.panel,
model="random",

random.method = "walhus")
pbgtest(model.re) #panel version of BG test for serial correlation

##
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
##
## data: war ~ lpopl1 + polity2l + I(polity2l^2) + lgdpenl1 + nwstate + ncontig + oil + ethfrac + relfrac + colbrit + colfra + lmtnest + factor(region) + factor(year)
## chisq = 3703.9, df = 3, p-value < 2.2e-16
## alternative hypothesis: serial correlation in idiosyncratic errors

## ASIDE: Clustered standard errors vary based on if you have lm or plm
# If using lm you use vcovHC for robust and vcovCL for clustering (sandwich)
# If using plm you use vcovHC from the plm package for both
vcovRE <- vcovHC(model.re, cluster="group")
round(coeftest(model.re, vcovRE)[1:13,],4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5978 0.2841 2.1042 0.0354
## lpopl1 0.0404 0.0195 2.0739 0.0381
## polity2l 0.0010 0.0022 0.4768 0.6335

349



## I(polity2l^2) -0.0016 0.0005 -3.4975 0.0005
## lgdpenl1 -0.1090 0.0249 -4.3696 0.0000
## nwstate 0.0425 0.0324 1.3104 0.1901
## ncontig -0.0444 0.1270 -0.3495 0.7268
## oil -0.0203 0.0254 -0.7993 0.4242
## ethfrac 0.0156 0.0854 0.1829 0.8549
## relfrac 0.0483 0.0873 0.5531 0.5802
## colbrit -0.0389 0.0604 -0.6433 0.5201
## colfra -0.0764 0.0623 -1.2274 0.2197
## lmtnest 0.0026 0.0116 0.2255 0.8216

# moving to FE we need to first ID which variables are constant
# within units
within.var(model1, cw.data, "ccode", "year")

## [1] "relfrac" "colbrit" "colfra" "lmtnest"
## [5] "factor(region)"

## Drop the constant years
model.within <- plm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate+ncontig

+oil+ethfrac-1, data=cw.panel, model="within", effect="twoways")
vcovFE <- vcovHC(model.within, cluster="group")
summary(model.within, vcov=vcovFE)

## Twoways effects Within Model
##
## Note: Coefficient variance-covariance matrix supplied: vcovFE
##
## Call:
## plm(formula = war ~ lpopl1 + polity2l + I(polity2l^2) + lgdpenl1 +
## nwstate + ncontig + oil + ethfrac - 1, data = cw.panel, effect = "twoways",
## model = "within")
##
## Unbalanced Panel: n = 156, T = 3-55, N = 6327
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.894987 -0.088025 -0.011341 0.054728 1.125709
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##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## lpopl1 0.03029390 0.06532354 0.4638 0.6428423
## polity2l 0.00052093 0.00227043 0.2294 0.8185350
## I(polity2l^2) -0.00162059 0.00047016 -3.4469 0.0005709 ***
## lgdpenl1 -0.11236350 0.02981168 -3.7691 0.0001654 ***
## nwstate 0.04571893 0.03311978 1.3804 0.1675105
## ncontig -0.32228105 0.04302900 -7.4899 7.872e-14 ***
## oil -0.03870732 0.03018082 -1.2825 0.1997112
## ethfrac -0.71283175 0.22332463 -3.1919 0.0014205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 366.33
## Residual Sum of Squares: 351.23
## R-Squared: 0.041203
## Adj. R-Squared: 0.0071453
## F-statistic: 50.8164 on 8 and 155 DF, p-value: < 2.22e-16

linearHypothesis(model.within,c("polity2l=0", "I(polity2l^2)=0"), vcov=vcovFE)

## Linear hypothesis test
##
## Hypothesis:
## polity2l = 0
## I(polity2l^2) = 0
##
## Model 1: restricted model
## Model 2: war ~ lpopl1 + polity2l + I(polity2l^2) + lgdpenl1 + nwstate +
## ncontig + oil + ethfrac - 1
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 6111
## 2 6109 2 11.888 0.002622 **
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# FE (LSDV)
model.LSDV <- lm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate+ncontig

+oil+ethfrac
+factor(ccode) + factor(year)-1,
data=cw.data)

signif(coeftest(model.LSDV, vcov=cluster.civilwar)[1:10,],2)

## Estimate Std. Error t value Pr(>|t|)
## lpopl1 0.03000 0.06700 0.45 6.5e-01
## polity2l 0.00052 0.00230 0.22 8.2e-01
## I(polity2l^2) -0.00160 0.00048 -3.40 7.4e-04
## lgdpenl1 -0.11000 0.03000 -3.70 2.2e-04
## nwstate 0.04600 0.03400 1.40 1.8e-01
## ncontig -0.32000 0.04400 -7.30 2.5e-13
## oil -0.03900 0.03100 -1.30 2.1e-01
## ethfrac -0.71000 0.23000 -3.10 1.8e-03
## factor(ccode)2 1.30000 0.81000 1.60 1.2e-01
## factor(ccode)20 1.30000 0.63000 2.00 4.5e-02

linearHypothesis(model.LSDV,c("polity2l=0", "I(polity2l^2)=0"),
test="Chisq",
vcov=cluster.civilwar)

## Linear hypothesis test
##
## Hypothesis:
## polity2l = 0
## I(polity2l^2) = 0
##
## Model 1: restricted model
## Model 2: war ~ lpopl1 + polity2l + I(polity2l^2) + lgdpenl1 + nwstate +
## ncontig + oil + ethfrac + factor(ccode) + factor(year) -
## 1
##
## Note: Coefficient covariance matrix supplied.
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##
## Res.Df Df Chisq Pr(>Chisq)
## 1 6111
## 2 6109 2 11.406 0.003336 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# note we can extract the individual intercepts
head(fixef(model.within))

## 2 20 40 41 42 51
## 1.2547580 1.2628873 0.6730103 0.5903736 0.5726310 0.6394049

tail(fixef(model.within))

## 840 850 900 910 920 950
## 1.946320 2.010918 1.282981 1.582068 1.358539 1.431548

# For random effects
head(ranef(model.re)+model.re$coefficients[1])

## 2 20 40 41 42 51
## 0.5624116 0.5812645 0.5559889 0.5686911 0.5423391 0.5682329

# Mundlak version
within.data <- cw.data %>%

slice(as.numeric(row.names(model.LSDV$model)))
cw.data <- within.data %>%

group_by(ccode) %>%
mutate(lpopl1.mean= mean(lpopl1, na.rm=T),

polity2l.mean =mean(polity2l, na.rm=T),
polity2l.sq = polity2l^2,
polity2l.sq.mean =mean(polity2l.sq, na.rm=T),
lgdpenl1.mean=mean(lgdpenl1,na.rm=T),
nwstate.mean =mean(nwstate,na.rm=T),
ncontig.mean =mean(ncontig,na.rm=T),
oil.mean =mean(oil,na.rm=T),
ethfrac.mean =mean(ethfrac,na.rm=T))

cw.panel <- pdata.frame(cw.data, index=c("ccode", "year"))
model.cre <- plm(war~lpopl1+polity2l+I(polity2l^2)+lgdpenl1+nwstate
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+ncontig+oil+ethfrac
+ lpopl1.mean+polity2l.mean
+ polity2l.sq.mean+lgdpenl1.mean
+ nwstate.mean+ncontig.mean+oil.mean
+ethfrac.mean
+relfrac
+colbrit+colfra+lmtnest
+factor(year),

model="random",
random.method = "walhus",
data=cw.panel)

vcovCRE <- vcovHC(model.cre, cluster="group")
signif(coeftest(model.cre, vcovCRE)[1:17,],2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.45000 0.25000 1.800 6.5e-02
## lpopl1 0.03100 0.06500 0.480 6.3e-01
## polity2l 0.00054 0.00230 0.240 8.1e-01
## I(polity2l^2) -0.00160 0.00047 -3.400 5.6e-04
## lgdpenl1 -0.11000 0.02900 -3.800 1.4e-04
## nwstate 0.04600 0.03300 1.400 1.7e-01
## ncontig -0.32000 0.04200 -7.600 3.0e-14
## oil -0.03900 0.03000 -1.300 2.0e-01
## ethfrac -0.71000 0.22000 -3.200 1.2e-03
## lpopl1.mean 0.01200 0.06800 0.170 8.6e-01
## polity2l.mean 0.00630 0.00360 1.800 7.5e-02
## polity2l.sq.mean 0.00041 0.00087 0.470 6.4e-01
## lgdpenl1.mean -0.00180 0.04300 -0.042 9.7e-01
## nwstate.mean -0.64000 0.22000 -2.800 4.5e-03
## ncontig.mean 0.46000 0.06300 7.200 6.2e-13
## oil.mean 0.17000 0.07200 2.400 1.7e-02
## ethfrac.mean 0.74000 0.24000 3.100 2.1e-03

signif(cbind(model.within$coefficients,
model.LSDV$coef[1:8],
model.cre$coef[2:9],
model.re$coef[2:9]),
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2)

## [,1] [,2] [,3] [,4]
## lpopl1 0.03000 0.03000 0.03100 0.0400
## polity2l 0.00052 0.00052 0.00054 0.0010
## I(polity2l^2) -0.00160 -0.00160 -0.00160 -0.0016
## lgdpenl1 -0.11000 -0.11000 -0.11000 -0.1100
## nwstate 0.04600 0.04600 0.04600 0.0430
## ncontig -0.32000 -0.32000 -0.32000 -0.0440
## oil -0.03900 -0.03900 -0.03900 -0.0200
## ethfrac -0.71000 -0.71000 -0.71000 0.0160

linearHypothesis(model.cre,
c("lpopl1.mean=0",

"polity2l.mean=0",
"polity2l.sq.mean=0",
"lgdpenl1.mean=0",
"nwstate.mean=0",
"ncontig.mean=0",
"oil.mean=0"),

vcov=vcovCRE)

## Linear hypothesis test
##
## Hypothesis:
## lpopl1.mean = 0
## polity2l.mean = 0
## polity2l.sq.mean = 0
## lgdpenl1.mean = 0
## nwstate.mean = 0
## ncontig.mean = 0
## oil.mean = 0
##
## Model 1: restricted model
## Model 2: war ~ lpopl1 + polity2l + I(polity2l^2) + lgdpenl1 + nwstate +
## ncontig + oil + ethfrac + lpopl1.mean + polity2l.mean + polity2l.sq.mean +
## lgdpenl1.mean + nwstate.mean + ncontig.mean + oil.mean +
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## ethfrac.mean + relfrac + colbrit + colfra + lmtnest + factor(year)
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 6259
## 2 6252 7 74.882 1.516e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

### NOTES: MARGINS
# okay you guys got lucky. Margins didn't use to work on plm models
# Now it does!
ME <- margins(model.within,

variables = "polity2l",
at=list(polity2l=-10:10), vcov=vcovFE)

summary(ME)

## factor polity2l AME SE z p lower upper
## polity2l -10.0000 0.0329 0.0098 3.3714 0.0007 0.0138 0.0521
## polity2l -9.0000 0.0297 0.0089 3.3526 0.0008 0.0123 0.0470
## polity2l -8.0000 0.0265 0.0080 3.3267 0.0009 0.0109 0.0420
## polity2l -7.0000 0.0232 0.0071 3.2898 0.0010 0.0094 0.0370
## polity2l -6.0000 0.0200 0.0062 3.2353 0.0012 0.0079 0.0321
## polity2l -5.0000 0.0167 0.0053 3.1509 0.0016 0.0063 0.0271
## polity2l -4.0000 0.0135 0.0045 3.0125 0.0026 0.0047 0.0223
## polity2l -3.0000 0.0102 0.0037 2.7712 0.0056 0.0030 0.0175
## polity2l -2.0000 0.0070 0.0030 2.3266 0.0200 0.0011 0.0129
## polity2l -1.0000 0.0038 0.0025 1.5080 0.1315 -0.0011 0.0087
## polity2l 0.0000 0.0005 0.0023 0.2294 0.8185 -0.0039 0.0050
## polity2l 1.0000 -0.0027 0.0024 -1.1242 0.2609 -0.0075 0.0020
## polity2l 2.0000 -0.0060 0.0029 -2.0664 0.0388 -0.0116 -0.0003
## polity2l 3.0000 -0.0092 0.0035 -2.5967 0.0094 -0.0161 -0.0023
## polity2l 4.0000 -0.0124 0.0043 -2.8881 0.0039 -0.0209 -0.0040
## polity2l 5.0000 -0.0157 0.0051 -3.0563 0.0022 -0.0257 -0.0056
## polity2l 6.0000 -0.0189 0.0060 -3.1597 0.0016 -0.0307 -0.0072
## polity2l 7.0000 -0.0222 0.0069 -3.2269 0.0013 -0.0356 -0.0087
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## polity2l 8.0000 -0.0254 0.0078 -3.2729 0.0011 -0.0406 -0.0102
## polity2l 9.0000 -0.0286 0.0087 -3.3056 0.0009 -0.0456 -0.0117
## polity2l 10.0000 -0.0319 0.0096 -3.3297 0.0009 -0.0507 -0.0131

plot.AME <- summary(ME)
plot(AME~polity2l, data=plot.AME,

type="l",
ylim=c(min(plot.AME$lower),

max(plot.AME$upper)),
ylab="Marginal effect of democracy on civil war",
xlab="Polity score"

)
lines(lower~polity2l, data=plot.AME, type="l", lty="dashed", col="blue")
lines(upper~polity2l, data=plot.AME, type="l", lty="dashed", col="blue")
abline(h=0,col="grey50")
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### linearHypothesis and deltaMethod work as expected (mostly)
#note the use ` ` when the var name has a parenthesis
# One note: the parameterNames option in deltaMethods does *not* work
# with plm objects at this time
deltaMethod(model.within,

g="-polity2l/(2*`I(polity2l^2)`)",

357



vcov=vcovFE)

## Estimate SE 2.5 % 97.5 %
## -polity2l/(2 * `I(polity2l^2)`) 0.16072 0.70003 -1.21131 1.5328

# Put it all together
model.list <- list(model1,

model1.years,
model.re,
model.cre,
model.within,
model.LSDV)

var.list <- list(vcovCL(model1, cluster=cw.data$ccode),
vcovCL(model1.years, cluster=cw.data$ccode),
vcovRE,
vcovCRE,
vcovFE,
vcovCL(model.LSDV, cluster=cw.data$ccode))

se.list <- lapply(var.list, function(x){sqrt(diag(x))})
stargazer(model.list,

se=se.list,
float.env = "sidewaystable",
title="Panel models of civil war onset",
label="tab:p.civwar",
no.space=TRUE,
omit=c("factor\\(c*", ".mean"),
dep.var.labels = "Civil War Onset",
model.names = FALSE,
model.numbers = FALSE,
column.labels = c("OLS", "OLS", "RE", "CRE", "FE-Within", "FE-LSDV"),
header=FALSE,
font.size = "small",
add.lines=list( c("Region Dummies",

"No", rep("Yes", 3), "No", "No"),
c("Year Dummies",

"No", rep("Yes", 5)),
c("Country Dummies",
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rep("No",4), "--", "Yes")),
covariate.labels = c("Population (log)",

"Democracy",
"Democracy sq.",
"GDP pc (log)",
"New State",
"Non-continguous state",
"Oil exporter",
"Ethnic Frac.",
"Religious Frac",
"British Colony",
"French Colony",
"\\% Mountainous terrain (log)"),

keep.stat = c("n", "adj.rsq"))

8.5 Bonus topic: Dynamic panel models

We mentioned above that including lagged dependent variable in a panel model violates strict
exogeneity. Unless we have iid observations within units, this will induce bias in the estimates.
Given that we are unlikely to have iid observations if the process is dynamic, other strategies
will be needed. Here are three

1. Use the LSDV/within estimator with large T

• The bias in the LSDV/within estimates is decreasing in T . Like with ordinary
time series data, we need a long series to get consistency with weak exogeneity
and dependent observations.

2. Anderson-Hsiao (AH) estimator

• Given that the problem is endogeneity, we should instrument for it.
• Start with the FD estimator

∆yit = β′(∆xit) + γ(∆yit−1) + ∆εit,

and instrument for ∆yit−1 with yit−2.

3. Arellano-Bond (AB) estimator
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• Instrumenting is a good idea, but there are tons of potential instruments.
• Start with the FD estimator

∆yit = β′(∆xit) + γ(∆yit−1) + ∆εit,

• Let ∆xit = [∆yit−1,∆xit], then the instrument matrix for the AB estimator for
group i is formed by using all the available lags of yit

Zi =


yi1 0 0 0 . . . 0 0 | ∆xi3
0 yi1 yi2 0 . . . 0 0 | ∆xi4
0 0 0 yi1:3 0 . . . 0 | ∆xi5
... ... ... . . .

. . . ... ... | ...

 .

Now we form full Z matrix by stacking these up Z = [Zi]Ni=1, and likewise to make
X =

[
[∆xit]Tt=3

]N
i=1

, where we lose t = 1, 2 to lags and differences. Other variations
exist, one that makes life easier is the “collapsed” version

Zi =


yi1 0 0 . . . | ∆xi3
yi2 yi1 0 . . . | ∆xi4
yi3 yi2 yi3 . . . | ∆xi5
... ... ... . . . | ...

 .

with 0s used to fill in values lost to the lagging process. Another approach is
called the “system” estimator. It uses both lagged values and lagged differences as
instruments in either the collapsed or uncollapsed form.

• Fit the model using GMM (discussed above in the advanced IV topics). The
function pgmm in the plm package does this for you. Note that with bigger data
sets, this matrix can be quite unweldy and computationally troublesome from a
memory perspective. In these cases, AH is good alternative.

The AH and AB estimators are best for small-T , big-N panels. If T is large you should be just
fine with the LSDV/within. The AH estimator can be fit with ivreg, plm, or pgmm (probably
pgmm is easiest, just use the right options to match what’s listed). The AB estimator is fit
with pgmm.
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8.6 Bonus topic: A primer on difference-in-differences

Panel data provides an important avenue for fighting endogeneity. As we know, fixed effects
estimators control for any invariant omitted variables. Beyond that however, we can use
repeated observations over time to uncover interesting casual estimates. Before we go any
further, let’s define a few new concepts

8.6.1 Casual inference and potential outcomes

• Potential outcome We will let yi(xi) be the potential outcome that yi takes on when
observation i receives treatment xi ∈ {0, 1}

• Treatment effect The effect that receiving treatment has on yi

TE(xi) = yi(1)− yi(0).

The fundamental problem of casual inference is that each individual can only ever
observe one potential outcome. We can never observe both.

• Average treatment effect The ATE is defined as

E[yi(1)− yi(0)].

• Average treatment effect on the treated The ATT is defined as

E[yi(1)− yi(0)|xi = 1].

Let’s consider the relationship among these quantities. First,let’s rewrite the ATE in terms
of observed data

E[yi|xi = 1]− E[yi|xi = 0] = E[yi(1)|xi = 1]− E[yi(0)|xi = 0] by assumption

= E[yi(1)|xi = 1]− E[yi(0)|xi = 1]︸ ︷︷ ︸
ATT

−E[yi(0)|xi = 0] + E[yi(0)|xi = 1]︸ ︷︷ ︸
Selection bias (endogeneity)

.

What does this tell us? The ATE is a combination of the ATT and bias that is introduced
through non-random treatment assignment. And what is the ATT?

ATT(xi) = E[yi(1)− yi(0)|xi = 1]

= E[yi(1)|xi = 1]︸ ︷︷ ︸
observable

−E[yi(0)|xi = 1]︸ ︷︷ ︸
counterfactual
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Here, we can see part of the problem, we need to figure out to estimate the counterfactual
component to make advancement here. In substantive terms, we need to know what would
have happened to the treated observations if they hadn’t been treated. The selection bias
then comes from the possibility that untreated individuals may not provide good estimates
for the counterfactual quantity E[yi(0)|xi = 1]. Put another way, the types of people who do
an do not seek out a job training program may not be the same on qualities like ambition,
connections, skills. These differences make E[yi(0)|xi = 0] and E[yi(0)|xi = 1] potentially
quite different. If however, we can minimize these concerns (through random treatment
assignment, say) then

E[yi(0)|xi = 0] = E[yi(0)|xi = 1]

and
E[yi|xi = 0]− E[yi|xi = 1] = E[yi(1)− yi(0)|xi = 1] = E[yi(1)− yi(0)].

With observational (non-experimental) data we will often be unable to identify the ATE
without an interesting theoretical model that we can rely on. However, we can sometimes get
to the ATT under various design-based assumptions. One such way to do that with panel
data is with a difference-in-differences (DiD) design.

8.6.2 DiD framework

Let’s start with a simple case two groups s = 1, 2, within-group units i = 1, . . . , N , where
each unit is observed for two time periods t = 1, 2. Neither group receives treatment in period
1, but one group receives it between periods 1 and 2. This setup is called a 2× 2 DiD design.
Without loss of generality, suppose that s = 1 is the group that receives treatment. We will
work backwards on this one by starting with what might strike us as an intuitive quantity
and then see what it actually tells us. Let ȳ(s, t) be the sample mean of the outcome y within
group s in period t. Then we will consider the quantity

β̂ = (ȳ(s = 1, t = 2)− ȳ(s = 1, t = 1))− (ȳ(s = 2, t = 2)− ȳ(s = 2, t = 1)) .

What makes this quantity intuitive? It provides us the average change in y after treatment
and then subtracts out how much y changed absent treatment.

What do we actually estimate with this quantity? Let’s replace these sample means with
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their expected values

β = (E[yist|si = 1, t = 2]− E[yist|si = 1, t = 1])− (E[yist|si = 2, t = 2]− E[yist|si = 2, t = 1])

= (E[yist(1)|si = 1, t = 2]− E[yist(0)|si = 1, t = 1]) by assumption

− (E[yist(0)|si = 2, t = 2]− E[yist(0)|si = 2, t = 1]) by assumption

+ E[yist(0)|si = 1, t = 2]− E[yist(0)|si = 1, t = 2] add 0

= (E[yist(1)|si = 1, t = 2]− E[yist(0)|si = 1, t = 2])︸ ︷︷ ︸
ATT

+ (E[yist(0)|si = 1, t = 2]− E[yist(0)|si = 1, t = 1])︸ ︷︷ ︸
Trend among treated w/o treatment

− (E[yist(0)|si = 2, t = 2]− E[yist(0)|si = 2, t = 1])︸ ︷︷ ︸
Trend among control w/o treatment

The final quantity contains three parts. The first is the ATT. The next two lines make up
what is known as the parallel trends assumptions. In order for us to identify the ATT, we
need these two trends to be identical. The second trend is observed, but the first trends is
the counterfactual “what if the treated group hadn’t been treated?” We don’t observe that.

Graphically, this could be represented as
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All right, what’s happening here? Well absent treatment we assume that both groups will
exhibit parellel trends in the outcome. With this assumption we can compare the observed
effect in the treatment group to the counterfactual effect absent treatment to compute the
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ATT. The control group is used to establish what those parallel trends should look like. When
this assumption is violated, our ATT is biased by how badly the assumption fails.

In the 2 ×2 framework, our basic model of interest takes the form

yist = β0 + β1 I(si = 1, t = 2)︸ ︷︷ ︸
Treatment group, post

+β2 I(t = 2)︸ ︷︷ ︸
post

+ + β3 I(si = 1, t = 1)︸ ︷︷ ︸
Treatment group, pre

εist.

Turning these dummies on and off we can get some values of interest and one effect:

̂E[yist(0)|si = 2, t = 1] = β̂0

̂E[yist(0)|si = 1, t = 1] = β̂0 + β̂3

̂E[yist(1)|si = 2, t = 2] = β̂0 + β̂2

̂E[yist(1)|si = 1, t = 2] = β̂0 + β̂1 + β̂2 + β̂3

̂E[yist(0)|si = 1, t = 2] = β̂0 + β̂2 + β3 Counterfactual

ÂTT = ̂E[yist(1)|si = 1, t = 2]− ̂E[yist(0)|si = 1, t = 2]

= β̂1

If parallel trends is a good assumption than the 2 × 2 DiD will give you what you want.
Otherwise, the estimator will impose the control trend on the treatment group to estimate
the counterfactual trend. The worse assumption parallel trends is, the worse the bias is
because our counterfactual is wrong.
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Consider this new figure where the purple dashed line is the true counterfactual. Fitting the
DiD model will return the gap between the red solid and red dashed lines which is clearly
very different from the true ATT. This occurs because the model builds in the parallel trends
assumption.

Unfortunately, parallel trends is not testable. Instead we have to rely on some work-around
arguments to assert that parallel trends is not an unreasonable assumption. There are two
ways you can think about trying to justify this approach. One is to show that (pre-treatment)
the observations in the treatment group look very similar to those in the control group on a
host of relevant observables. These checks will help make the case that the two groups are
comparable and should look similar on a host of issues along with way. The second approach
is to consider pre-treatment placebo effects. This means that you estimate a treatment effect
for q pre-treatment periods. These should all be zero. The argument here is that if there are
no effects pre-treatment then the DiD lines are all parallel pre-treatment. If the assumption
is good pre-treatment, why not post? It’s a reach, but take what you get.

Now to fit the placebo test you need more than two-periods. This take us into a more general
DiD approach with multiple groups s = 1, . . . , S and multiple time periods. Let t = 0 be
the period where treatment is applied. Negative periods will be pre-treatment, positive
post-treatment. Without loss of generality, suppose that the first s∗ groups are treated and
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the rest are control. Our model is now

yist = αs + τt +
−1∑

t′=−q
βt′I(s ≤ s∗, t = t′) +

m∑
t∗=0

βt∗I(s ≤ s∗, t = t∗) + γ′zist + εist.

Here we want β−q, . . . , β−1 to be all 0, and β0, . . . , βm are the treatment effects for m periods
out. Note that this model can be fit using OLS with two-way fixed effects (group and time
dummies or transformations), where each time dummy is also interacted with an indicator
for whether the group receives treatment. We can use lm to fit this without trouble.

Another type of placebo test helps provide credibility to this exercise. Here, you want to swap
out the outcome with a similar outcome variable, but one where you think there should be
no effect. In a minimum wage study, the outcome of interest might be low-wage employment
rate, a placebo test may be high wage or prestige employment rate where we suspect that
changes in the minimum wage would have little-to-no effect. These tests should be designed
to rule out some common trend would effect the outcome other than the treatment of interest
(like a recession between periods 1 & 2).

Finally, when treatments occur in different units at different times, things can get weird.
Differential timing and right way to think about it is a growing and active field, but more
than I want to get into right now, so we’ll call it here.

8.7 Bonus topic: Estimating the effect of time-invariant variables
with fixed effects

Both of our main estimators for the fixed-effects model remove all time-invariant variables.
Most of the time, this isn’t a big deal, but sometimes we may want to know the effects of a
specific time-invariant variable on the outcome. The easiest method would be to just use the
CRE estimator from above. But if any of your invariant variables are also endogenous there
is another alternative that can be a little better: the Hausman-Taylor (HT) estimator. Start
with the model

yit = β′1x1it + β′2x2it + γ′1z1i + γ′2z2i + αi + uit,

where

• x1it contains K1 time-varying exogenous variables

• z1i contains L1 time-unvarying exogenous variables

• x2it contains K2 time-varying endogenous variables (correlated with ui)
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• z2i contains L2 time-unvarying endogenous variables (correlated with ui).

HT impose some random effects style structure on the model.

E[αi] = E[αi|x1it, z1it] = 0

Var(αi|x1it, x2it, z1i, z2i) = σ2
α

Cov(αi, uit|x1it, x2it, z1i, z2i) = 0

Var(uit + αi|x1it, x2it, z1i, z2i) = σ2
ε = σ2

α + σ2
u

Cov(uit + αi, uis + αi|x1it, x2it, z1i, z2i) = σ2
α

Our goals is to estimate θ = (β, γ) = (β1, β2, γ1, γ2). It should be obvious how to obtain
consistent estimates of β: the LSDV/within estimator. The standard within transformation
removes αi and thus both x1 and x2 are now exogenous for the purposes of estimation.

The HT insight is that the K1 + K2 within-transformed X’s can be instruments for their
untransformed counterparts. The exogenous z1 variables can instrument for themselves and
the group means of x1 can be used as instruments for z2 so long as K1 ≥ L2. The HT
estimator is an FGLS, that takes the following form:

1. Use the FE estimator to obtain estimates of β. Use the residuals from this to produce
σ̂2
u.

2. Construct the within-group constants using the FE estimates of β

δ̂i = ȳi − x̄iβ̂FE
≈ γ′zi + αi + ūi with abuse

Generate δ̂it = δ̂i ⊗ 1T , where ⊗ is the Kronecker product. What this means is that we
just repeat the within-group mean of the residuals T times within each group.

3. Using 2SLS regress δ̂ on z1 and z2 with instruments z1 and x1. This will produce
consistent estimates of γ. We could stop here since everything is consistent, but to
clean but some inefficiency we move on.

4. The variance of the residuals from the 2SLS in the last step is a consistent estimate of
σ2
ε = σ2

α + σ2
u/T . We have a consistent estimate of σ2

u from above, so we can use these
two things to back out σ2

α. The FGLS weights for the RE model are, as we know from
above,

λ = 1− σu√
σ2
u + Tσ2

α

.
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5. We now have data, instruments, and weights, we’re set. Let

xit = (x1it, x2it, z1i, z2i)

x̃it = xit − λx̄i
ỹit = yit − λȳi
zit = (x1it − x̄1i, x2it − x̄2i, z1i, x̄1i),

then are estimates are

θ̂HT = [X̃′Z(Z′Z)−1Z′X̃]−1[X̃′Z(Z′Z)−1Z′ỹ],

which is the over-identified 2SLS with regressors X̃ and instruments Z. The problem with
this approach is that you need to know which variables are 1s (exogenous) and which are 2s
(endogenous), but that’s always true in research design. This estimator can be used with
plm by setting model="ht" and specifying the instruments (the help file for plm has an HT
example).

8.8 Bonus topic: Panel Newey-West standard errors

If you have a large N you should be using clustered standard errors if you believe in
Assumption E2. but if you don’t have a large N and instead are relying on large-T , small-N
asymptotics then you want to use the panel version of Newey West standard errors. Recall
that we need to specify ΣT in order to get to this variance matrix. We being with defining a
Newey-West style function

λ̂(`) = 1
T − `− 1

T∑
t=`+1

(
1
N

N∑
i=1

xitε̂it

)(
1
N

N∑
i=1

xit−`ε̂it−`

)
,

Then we will exploit the ergodic nature of the data to get

Σ̂T = λ̂(0) +
L∑
`=1

(
1− `

L+ 1

)(
λ̂(`) + λ̂(`)′

)
.

As before, we have to choose L and we should choose L such that it increases with T . The
plm function vcovNW will implement this for us.
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